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Abstract

A thought experiment with two small objects sliding, in opposite directions,
along a rotating ring is used to derive, in both Galilean and Special relativity, the
transformation formulas for relative angular and spatial velocities. The latter for-
mula requires, in conjunction with time dilation, the invariance of length intervals
in Special relativity and resolves the Ehrenfest rotating disc paradox. The inappli-
cablity, to the problem considered, of the conventional relativistic parallel velocity
addition relation is demonstrated, and some correct physical interpretations of the
relation are discussed. How spurious and correlated ‘length contraction’ and ‘rel-
ativity of simultaneity’ effects arise from misuse of the Lorentz transformations is
explained. Simple formulas, equivalent to the Lorentz transformations, describing
the space-time geometry of a ponderable object in different inertial frames, are
presented.

PACS 03.30.+p



1 Introduction

The present paper describes a simple thought experiment, where two objects slide, in
opposite directions, around a narrow rotating ring, that enables the derivation of transfor-
mation formulas for relative angular and spatial velocities. The analysis is performed in
both Galilean and Special relativity theories. To avoid possible problems related to defi-
nitions of coordinate systems, only angular, spatial and temporal intervals, independent
of the choice of coordinate system are considered. The transformation formula for angular
velocities obtained, previously derived by Post [1], is markedly different from the one given
by the conventional parallel velocity addition formula of Special relativity. Application of
the corresponding transformation formula for parallel relative spatial velocities shows that
length intervals are invariant and that the Reciprocity Principle [2] of Galilean relativity
no longer holds in Special relativity. How the spurious ‘length contraction’ and ‘relativ-
ity of simultaneity’ effects of conventional Special relativity theory arise from misuse of
spatial and temporal coordinate systems in the Lorentz transformation equations is also
explained.

The structure of the paper is as follows: The following two sections describe analyses

of the thought experiment in Galilean and Special relativity, respectively. In Section 4

the invariance of length intervals is derived and the Ehrenfest paradox concerning the

ratio of the circumference of a rotating disc to its radius, is resolved. In Section 5 it is

shown that application of the conventional parallel velocity addition formula of Special

relativity to the thought experiment considered leads to violation of the principle enun-

ciated by Langevin [3] of the frame invariance of a triple world line coincidence. In the

concluding section, the previous derivation of the transformation formula, due to Post, for

relative angular velocities, is recalled and the correct physical meaning of the conventional

parallel velocity addition formula is discussed. Finally, the unphysical origin of the cor-

related ‘length contraction’ and ‘relativity of simultaneity’ effects is discussed and simple

space-time equations for the world lines of ponderable objects in different frames, in both

Galilean and Special relativity, are presented. The latter, though simpler, are physically

equivalent to the (correctly interpreted) space-time Lorentz transformation equations.

2 Galilean-relativistic analysis

The thought experiment considered is shown in Fig. 1. Two identical small circular
objects of radius much less than that, ρ′, of a narrow ring, slide, in a frictionless manner,
around, the interior of ring, in opposite directions, with constant and equal angular speeds
relative to the ring. The clockwise and anticlockwise rotating objects are denoted as (+)
and (−) respectively, At time t′ = 0, as registered by a clock stationary in the rest
frame, S’, of a fixed point on the ring, the objects are aligned with the point O’ on the
ring. The top left hand configuration in Fig. 1 shows the configuration in S’ at time
t′ = φ′

−
/ω′ = φ′

+/ω′, where φ′

−
, φ′

+ are angular displacements of the objects from O’ and
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Figure 1: Two small objects (+), (−) slide, in opposite directions, with constant angular
velocity, ω′, relative to a narrow ring of radius ρ′. The ring rotates about its centre in a
clockwise direction with angular velocity Ω = ω− in the inertial frame S. The left-hand
figures show configurations in the comoving inertial frame S’ of the fixed point O’ on the
ring, at different times. In the lower-left figure, the objects have completed one circuit of
the ring. The right hand figures show the corresponding configurations in the frame S. At
t = 0 the fixed point O in S is aligned with O’. For clarity the sliding objects are slightly
displaced radially relative to the ring
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ω′ = dφ′

−
/dt′ = dφ′

+/dt′.1 The ring rotates with constant angular velocity, Ω = dΦ/dt, in
the clockwise direction, in the inertial frame, S, in which the center of the ring is at rest.
The time t is recorded by a clock at rest in the frame S. The frame S’ is now identified with
the comoving inertial frame of O’. In this frame O’ is the origin of coordinates, the x′ axis
is tangent to the ring and the y′ axis in the outward radial direction. Similar coordinate
axes with origin at O are defined in the frame S (see Fig. 1). At time t = t′ = 0, the point
O’ on the ring is coincident with the point O. The top right hand configuration in Fig 1.
is in S at time t = φ−/ω− = φ+/ω+ where ω− = dφ−/dt and ω+ = dφ+/dt. The bottom
left hand configuration is in S’ at time t′ = T ′ = 2π/ω′ when both objects have completed
one circuit of the ring, in opposite directions, and are again aligned with O’. The lower
right hand configuration in Fig. 1 is in S at time t = T = π/Ω = π/ω− = 3π/ω+ for
the case where Ω = ω− = ω+/3. At this time, in the frame S, both O’ and the object
(−) have rotated through an angle of π rad while the object (+) has rotated through an
angle of 3π rad. As is the case in the frame S’ at time t′ = T ′ the two objects and O’ are
aligned in S at time t = T .

Introducing the angles φr
−
,φr

+ which give the angular separation of the objects from
O’ in the frame S:

φr
−
≡ φ− + Φ, φr

+ ≡ φ− − Φ (2.1)

then
dφr

−

dt
≡ ωr

−
=

dφ−

dt
+

dΦ

dt
= ω− + Ω (2.2)

and
dφr

+

dt
≡ ωr

+ =
dφ+

dt
− dΦ

dt
= ω+ − Ω. (2.3)

Since the lower right hand configuration in Fig. 1 corresponds to φr
−

= φr
+ = 2π it follows

that

ωr
−

= ωr
+ =

2π

T
(2.4)

In Galilean relativity, where time is the same in all frames of reference, T = T ′ so that
(2.4) gives:

ωr
−

= ωr
+ =

2π

T ′
= ω′ (2.5)

(2.3), (2.4) and (2.5) then give the transformation formula for angular velocities between
the frames S and S’ as:

ω′

±
= ω± ∓ Ω (Galilean relativity) (2.6)

Note that ω′

±
= ω′ is the relative angular velocity of the objects and O’ in the frame S’

while the right side of (2.6) gives the angular velocities of the objects relative to O’ in
the frame S. Eq. (2.6) is therefore a relative angular velocity transformation formula. In
Galilean relativity the relative angular velocities of O’ and the objects (+) or (−) are
equal in the frames S and S’.

3 Special-relativistic analysis

The angles φ′

−
, φ′

+ specifiy the positions of the objects in S’, φ−, φ+ and Φ positions in

1Note that, with these definitions, all angular velocities and velocities are positive quantities.
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S. This is also the case in Special relativity so Fig. 1 requires no modification in this case.
However, since ω′ = dφ′

−
/dt′ = dφ′

+/dt′ while ω− = dφ−/dt, ω+ = dφ+/dt, Ω = dφ/dt,
the non-universality of time t 6= t′ in Special relativity implies that angular velocities in
different frames are modified as compared to the Galilean case. Since t′ is measured by a
clock at rest in S’ and t by a clock at rest in S, it is necessary to consider points on the world
line of a clock at rest in S’ (say at the position O’) in comparison with points on the world
line of the clock a rest in S. This is conveniently done, without the necessity to introduce
specific coordinate systems in the frames, by considering the invariant interval relation
for two points on the world line of the point O’. Using polar coordinates appropriate to
the geometry of the problem under consideration the relation is:

(ds)2 = c2(dt′)2 − (dr′)2 − (r′dφ′)2 = c2(dt)2 − (dr)2 − (rdφ)2 (3.1)

where primed intervals are defined in the frame S’ and unprimed ones in the frame S.
Since O’ is a rest in S’ dr′ = dφ′ = 0. Also, since for O’ in S, r = ρ = constant so that
dr = 0, the world line of O’ in S is (See Fig. 1) the helix: r = ρ, φ = Φ = Ωt. Inserting
these conditions in (3.1) gives:

(ds)2 = c2(dt′)2 = c2(dt)2 − ρ2Ω2(dt)2 = c2

[

1 − ρ2Ω2

c2

]

(dt)2 (3.2)

or

dt′ = dt

√

1 − ρ2Ω2

c2
≡ dt

γ(ρ, Ω)
≡ dt

γ
(3.3)

The time dilation effect for points on the rotating ring is then the same as for an inertial
frame moving with speed v = ρΩ relative to the frame S. The derivation of (3.3) is in
agreement with that of Møller [4] for the time dilation effect for a clock on a rotating disc.
The transverse acceleration experienced by points on the ring, in the frame S, therefore
has no effect on the rate of clocks comoving with them. Using (3.3) the relation T ′ = T
of the Galilean analysis is replaced by:

T = γT ′ (3.4)

(3.4) and (2.4) then give:

ωr
−

= ωr
+ =

2π

T
=

2π

γT ′
=

ω′

γ
(3.5)

so that the relative angular velocity transformation relation (2.6) of Galilean relativity is
changed to

ω′

±
= γ(ω± ∓ Ω) (Special relativity) (3.6)

By considering a configuration with Φ = 0 in Fig. 1 so that The O’x′ and Ox axes shown
are parallel, the relativistic transformation formula for parallel relative velocities may be
derived from (3.6). Since the radius vectors joining the center of the ring to O’ in the
frame S’, and to the corresponding point in the frame S, are perpendicular to the boost
direction between the S and S’, the corresponding spatial intervals are equal: ρ′ = ρ.
Introducing the space velocities:

u′

±
≡ ρ′ω′

±
= ρω′, u± ≡ ρω±, v ≡ ρΩ (3.7)

into (3.6) gives
u′

±
= γv(u± ∓ v) (Special relativity) (3.8)
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where γv ≡ 1/
√

1 − (v/c)2. The formula (3.8) is given below the acronym RRVTR for
Relativistic Relative Velocity Transformation Relation.

An interesting special case of (3.8) is u− = 0, in which case the anticlockwise rotating
object is a rest relative to O; i.e. u′

−
is the speed of O relative to O’ in the frame S’:

u′(O) = γvv (3.9)

Thus the speed of O relative to O’ in S’ is γvv, not v, in the case in which the speed of
O’ relative to O in S is specified to be v. The ‘Reciprocity Principle’ [2] which holds in
Galilean relativity: ‘If the velocity of B relative to A is ~v in the rest frame of A then the
velocity of A relative to B is -~v in the rest frame of B’, is then invalid in Special relativity.

A example of the application of (3.9) is to high energy muons produced near the top
of the Earth’s atmosphere that arrive at the surface of the Earth due to the time dilation
effect. This is possible not, as in the conventional text book explanation, because the
thickness of the atmosphere is reduced by the factor 1/γv by ‘length contraction’ in the
muon rest frame but because the speed of the atmosphere relative to the muon is γv times
greater than the speed of the muon through the atmosphere.

4 Invariance of spatial intervals in Galilean and Spe-

cial relativity and resolution of the Ehrenfest para-

dox

Consider the motion of the clockwise-turning object during small time intervals ∆t′,
∆t in S, S’ after t = t′ = 0. Suppose that, as shown in Fig. 2, a small interval of length
∆x′ is marked out on the ring —say there are two shallow grooves prependicular to the
plane of the ring separated by this distance. If ∆x′ � ρ the motion of the object is
essentially parallel to the x, x′ axes shown in the upper configurations in Fig. 1. The top
left (right) figures in Fig. 2 show configurations in S’ (S) at time t = t′ = 0. The lower left
(right) configurations are in S’(S) at t′ = ∆t′ (t = ∆t) when the object has just arrived
at the end of the marked interval. The space-time geometry of the lower configurations
in Fig. 2 gives:

∆x′ = u′

+∆t′ (4.1)

u+∆t = v∆t + ∆x (4.2)

Transposing (4.2) and using (3.8):

∆x = ∆t(u+ − v) =
u′

+∆t

γv

= u′

+∆t′ (4.3)

where in the last member the time dilation relation (3.3) has been used. Combining (4.1)
and (4.3) gives

∆x′ = ∆x (4.4)

which demonstrates the invariance of length intervals in both Galilean relativity where
γ(v) = 1, ∆t = ∆t′ and in Special relativity where γv > 1 and ∆t = γv∆t′.
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Figure 2: Configurations of (+), O’ and O for small time intervals ∆t′, ∆t such that
the O’x′, Ox axes shown in Fig. 1 are essentially parallel. The object (+) crosses the
fixed interval, marked by the small square grooves in the ring, ∆x′, in S’, in the time
interval ∆t′. During this interval O’ moves the distance v∆t away from O in the frame S.
Configurations at t′ = 0, t′ = ∆t′ in S’ are shown on the left side, and configurations at
t = 0, t = ∆t in S on the right side. The geometry of the lower right figure, the RRVTR
(3.8) and the time dilation relation: ∆t = γv∆t′ require that ∆x = ∆x′. For clarity
the object (+) is slightly displaced in the outward radial direction. See text for further
discussion.
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Figure 3: Division of the ring in the frame S’ into n arc segments of length ∆s′1, ∆s′2,
∆s′3,... each subtending an angle ∆φ′ at the ring center. The corresponding tangential
line segments subtending the same angle are of length: ∆x′

1, ∆x′

2, ∆x′

3,... .

Suppose that the ring is divided, in the frame S’, into n equal arc segments, ∆s′i, of
length ρ′∆φ′, as shown in Fig. 3. The tangential line segments of length ∆x′

i corresponding
to each of the arc segments are of length ρ′ tan∆φ′. For small values of ∆φ′ (∆φ′ � 2π)

∆x′

i = ρ′ tan∆φ′ = ρ′
sin ∆φ′

cos ∆φ′
= ρ′∆φ′

(

1 − (∆φ′)2

6
+ ...

)

(

1 − (∆φ′)2

2
+ ...

) = ∆s′i

(

1 +
(∆φ′)2

3

)

+ O((∆φ′)5)

(4.5)
Summing over all sectors into which the ring is divided:

n
∑

i=1

∆x′

i =
n
∑

i=1

∆s′i

(

1 +
(∆φ′)2

3

)

+ O((∆φ′)5) = C ′

(

1 +
(∆φ′)2

3

)

+ O((∆φ′)5) (4.6)

where C ′ ≡ ∑n
i=1 ∆s′i is the circumference of the ring. It follows from (4.6) that:

(Lim ∆φ′ → 0, n → ∞)
n
∑

i=1

∆x′

i = C ′ (4.7)

Performing a similar subdivision of the ring into sectors at a given instant in the frame
S, it is similarly found that:

(Lim ∆φ → 0, n → ∞)
n
∑

i=1

∆xi = C (4.8)

where C is the circumference of the ring in the frame S. Since, from (4.4), ∆xi = ∆x′

i

then (4.7) and (4.8) give C = C ′ i.e. the circumference of the ring is the same in the
frames S and S’.
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This resolves the ‘Ehrenfest paradox’ [5] concerning the ratio of the circumference
of a rotating disc to its radius. Ehrenfest remarked that the circumference of the disc
would be subject to length contraction, unlike the radius of the disc which is a length
interval perpendicular to the boost direction. In the notation of the present paper then
2πρ < 2πρ′, by consideration of the circumference of the disc, while ρ = ρ′ by consideration
of its radius. These are incompatible conditions, hence the paradox.

Einstein’s analysis of the problem [6, 7] considered length contraction of measuring
rods which are used to determine the circumference of the disc. By comparing measure-
ments of the circumference of the disc with such rods, with the disc either at rest or
rotating, and assuming length contraction of the rods (but not of the circumference of the
disc) in the rotating case, it was concluded that the ratio of the measured circumference to
the measured radius is greater than 2π. Since the length contraction effect does not exist
(c.f. (4.4), (4.7) and (4.8) above) the ratio is 2π both in the rest frame of the disc and in
a frame in which it is in uniform rotation, so that 2πρ = 2πρ′, removing the paradox.

In contrast to some text-book presentations of the problem [8, 9] no invocation of non-

Euclidian geometry is necessary for the relativistic analysis of the rotating disc problem.

In the General-relativistic analyses of [8, 9] time dilation is neglected when transforming

to the rotating system of coordinates. The special relativistic discussion of [8] repeats

Einstein’s argument recalled above.

5 Non-applicabilty to the present problem of the con-

ventional parallel velocity addition relation of Spe-

cial relativity

Making use of Eqs. (3.7), the conventional Relativistic Parallel Velocity Addition Re-
lation (RPVAR) [10]:

u′

±
=

u± ∓ v

1 ∓ u±v

c2

(5.1)

may be used to derive the corresponding transformation relation for angular velocities:

ω′

±
=

ω± ∓ Ω

1 ∓ ρ2ω±Ω
c2

. (5.2)

Algebraic transposition of (5.2) gives2:

ω̃± =
ω′

±
± Ω

1 ± ρ2ω′
±

Ω

c2

(5.3)

to be contrasted with the corresponding transposed version of Eq. (3.6):

ω± =
ω′

±

γv

± Ω. (5.4)

2For clarity the value of ω± given by fixed values of ω
′
± and Ω using (5.3) has a tilde accent to distingish

it from the similar quantity given by Eq. (5.4).
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The angular velocity of the objects relative to that of O’ in the frame S are given, according
to (5.3), by relations similar to (2.2) and (2.3):

ω̃r
+ = ω̃+ − Ω =

ω′

+ + Ω

1 +
ρ2ω′

+
Ω

c2

− Ω =
ω′

[

1 − ρ2Ω2

c2

]

1 + ρ2ω′Ω
c2

, (5.5)

ω̃r
−

= ω̃− + Ω =
ω′

−
− Ω

1 − ρ2ω′
−

Ω

c2

+ Ω =
ω′

[

1 − ρ2Ω2

c2

]

1 − ρ2ω′Ω
c2

. (5.6)

Choosing ω′

+ = ω′

−
= ω′ so that the lower left configuration in Fig. (1) occurs at time

t′ = T ′ = 2π/ω′, it is found from (5.5) and (5.6) that the objects are predicted to be
aligned with O’ at different times: T+ and T− in the frame S:

T+ =
2π

ω̃r
+

=
2π
[

1 + ρ2ω′Ω
c2

]

ω′

[

1 − ρ2Ω2

c2

] =
T ′(1 + βu′βv)

1 − β2
v

= Tγv(1 + βu′βv), (5.7)

T− =
2π

ω̃r
−

=
2π
[

1 − ρ2ω′Ω
c2

]

ω′

[

1 − ρ2Ω2

c2

] =
T ′(1 − βu′βv)

1 − β2
v

= Tγv(1 − βu′βv) (5.8)

where βu′ ≡ u′/c, u′ ≡ ρω′ and βv ≡ v/c. so that:

T+ − T−

T
= 2γvβu′βv. (5.9)

Choosing parameters in the transformation of Eq. (3.6) such that ω− = Ω, as in
the configurations shown in Fig. 1, then applying this transformation, gives ω′ = 2γvΩ.
Making the further choice βv = 1/4 gives then βu′ = 2/

√
15. In Fig. 3 the x′- or x-

projections of the world lines of the clockwise turning (+) and anticlockwise turning (−)
objects, as well as that of the point O’, are shown in the frame S’ in Fig. 3a and in the
frame S as calculated using either Eq. (5.4) in Fig. 3b or Eq. (5.3) in Fig. 3c, with the
above choice of βv and βu′ . In S’ the x′-projections of the helical world lines of the (+)
and (−) objects are symmetrical sine curves: x′

±
= ±ρ′ sin 2πt′/T ′, that of the world line

of O’ a straight line parallel to the t′ axis. In the frame S all the projected world lines
are sine curves with different angular frequencies for the (+) and (−) objects, depending
on the choice of transformation relations. Setting the radius, ρ′, of the ring to unity the
following predictions are obtained:

Eq (5.4) (RRVTR)

x− = − sin ω−t = − sin
πt

T
, (5.10)

x+ = sin ω+t = sin
3πt

T
, (5.11)

xO′ = sin Ωt = sin
πt

T
(5.12)

where, with the chosen parameters (see Fig. 1) T = π/Ω = π/ω− = 3π/ω+ = γvT
′ =

(4/
√

15)T ′.
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Eq (5.3) (RPVAR)

x− = − sin ω̃−t = − sin
πω̃−

ΩT
t = − sin 1.224

πt

T
, (5.13)

x+ = sin ω̃+t = sin
πω̃+

ΩT
t = sin 2.715

πt

T
, (5.14)

xO′ = sin Ωt = sin
πt

T
(5.15)

where (5.3) is used to obtain the angular frequency ratios:

ω̃−

Ω
=

βu′/βv − 1

1 − βu′βv

=
8/
√

15 − 1

1 − 1/(2
√

15)
= 1.224, (5.16)

ω̃+

Ω
=

βu′/βv + 1

1 + βu′βv

=
8/
√

15 + 1

1 + 1/(2
√

15)
= 2.715. (5.17)

Notice that the use of the RPVAR instead of the RRVTR increases the rotation frequency
in the frame S of the (−) object and decreases that on the (+) object. Using (5.7) and
(5.8) with βu′ = 2/

√
15 and βv = 1/4 gives:

T− = 0.8996T, T+ = 1.166T, (T+ − T−)/T = 0.2667.

Inspection of Fig. 3 demonstrates the inapplicabilty of the angular velocity transfor-
mation formula (5.3), derived from the RPVAR (5.1), to the problem under consideration.
If the world lines of O’ and the (+) and (−) objects intersect at a common point in the
frame S’, as is the case at the point P’ when t′ = T ′, a similar intersection must oc-
cur in all frames of reference. This is indeed the case in Fig. 3b at the point P where
t = T = γvT

′ (see also Fig. 1) but not in Fig. 3c where the world lines of the (+) and
(−) objects intersect with that of O’ at the different points P+, P− on the x-projection of
the world lines. The frame invariance of triple world line intersections may be considered
to be the ‘zeroth theorem’ of space-time physics —a condition that must necessarily be
respected by any candidate theory. This is a point that was clearly and graphically stated
by Langevin in the ‘twin paradox’ paper [3]:

With the new concepts, only one case remains and must remain where a
change of coordinate system has no effect. This is the case where two events
coincide in both space and time. Such a double coincidence must have, indeed,
an absolute meaning because it corresponds to contiguity of the two events
and that contiguity may produce a physical phenomenon, a new event, which
has necessarily an absolute sense. Consider again the previous example. If
the two objects which leave the cart by the same hole do so simultaneously, if
their departures coincide both in space and time, there may result a collision
which breaks the objects, and that collision has an absolute sense in that, in
no possible conception of the world, electromagnetic or mechanical, such a
spacetime coincidence, if it exists for one group of observers, could it not exist
for another, whatever their motion relative to the first. For those that see the
cart pass by as well as for those inside it, the two objects have broken each
other because they passed at the same time at the same point.3

3This English translation of French text of [3] is taken from the present author’s paper [11].
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Figure 4: x′- or x-projections of the world lines of (−), (+) and O’ with βv = 1/4 and
βu′ = 2/

√
15. a) in the frame S’; b) in the frame S with angular velocities transformed

according to Eq. (5.4) (the RRVTR); c) in the frame S with angular velocities transformed
according to Eq. (5.3) (the RPVAR). The points P’0, P’, O, P correspond to triple world
line coincidences ((−), (+) and O’ at the same place at the same time) The points P+, P−

are intersections of the world lines of (+) and O’ only, (−) and O’ only, respectively ((+)
and O’ at the same place at the same time, but not (−), or (−) and O’ at the same place
at the same time, but not (+).) Because triple world line coincidences are frame-invariant
the configuration of c) is physically impossible, given the configuration shown in a). This
shows that the transformation formula (5.3) is inapplicable to the problem in hand. See
text for further discussion.
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In Fig. 3 the world lines of Langevin’s two objects correspond to those of the (+) and (−)
objects, that of the hole in the floor of the cart to the world line of O’.

More recently a similar assertion was made by Mermin in a paper [12] in which the RP-
VAR was derived from the relativity principle and some simple assumptions of symmetry
and continuity, without consideration of light signals:

We consider a race taking place within a long straight train (...). A tortoise
and a hare start at the rear of the train toward the front. The hare gets there
first, turns immediately around and racing back towards the rear, encounters
the tortoise still making its way towards the front. Let u be the speed of the
tortoise in the train frame and s, the speed (in either direction) of the hare.

The part of the train where the two meet again is behind the front end
by some fraction r of the full length of the train. That fraction is a frame-
independent invariant, since there can be no disputing where on the train the
meeting occured. (They might for example meet in the 73rd car from the
front of a train consisting of 100 identical cars, giving the value r = 0.73.
Only passengers in car 73 would testify to having observed the encounter, and
this testimomy would be acceptable to observers in any frame of reference,
even though they might have quite different ideas about the lengths of the
cars.)

Here the triple world line intersection is that between those of the tortoise, the hare and
the position in the train at which they meet.

It must not be concluded from the non-applicabilty of the RPVAR to the problem
considered here that this relation is wrong in all circumstances. As explained in more
detail below, it does give correctly the transformation of the kinematical properties energy
and momentum of a moving object, as well as of the time-dilation factor γ, between
different inertial frames. However, it must not be assumed that it gives correctly the
transformation of the relative velocity between objects as observed in two inertial frames
in the same space-time experiment, which is, instead, given by the RRVTR. The RPVAR
is therefore not wrong, but inappropriately applied to the analysis of the the experiment
considered here.

6 Discussion and conclusions

The transformation formula (3.6) for relative angular velocities has been previously
derived by Post in a review article about the Sagnac effect [1]. Post relativistically gen-
eralised an earlier calculation of Langevin [13] to obtain the relation (Eq. (24) of [1]), in
the notation of the present paper:

dφ = dφ′ + γΩdt′. (6.1)

12



Division throughout by dt′ and use of the time dilation relation dt = γdt′ gives

dφ

dt′
= γ

dφ

dt
= γω+ =

dφ′

dt′
+ γΩ = ω′

+ + γΩ (6.2)

or, rearranging:
ω′

+ = γ(ω+ − Ω) (6.3)

which is Eq. (3.6). In the derivation of (6.1) Post considered the simplified Sagnac ex-
periment shown in Fig. 8 of [1]. The geometrical configuration is similar to that shown
in Fig. 1 above. However, in the Sagnac experiment, the light signals rotate with angular
speed c/ρ in both directions in the fixed inertial frame S. The observed Sagnac effect is a
consequence of the different angular velocities, and therefore different path lengths, in the
rotating frame, of the counter-rotating light signals, as given by Eq. (3.6) with ω± = c/ρ.
Notice that if the angular velocity transformation is performed according to the conven-
tional formula (5.2) with ω± = c/ρ it is found that ω′

+ = ω′

−
= c/ρ, the path lengths of

the signals in the rotating frame are equal and the experimentally-verified Sagnac effect
is predicted to vanish!

Clearly the RPVAR (5.1) in inapplicable both to the experiment described in the
present paper as well as to the similar Sagnac experiments where the space-time effects
observed are governed by the transformation formula (3.6) of relative angular velocities,
or the correponding formula (3.8), the RRVTR, for parallel relative spatial velocities.
The correct physical interpretation of the RPVAR, also discussed in [14, 15] will now be
considered.

Introducing the further notation γu ≡ 1/
√

1 − β2
u, βu ≡ u/c the RPVAR may be

written in three mathematically equivalent ways:

βu =
βv + βu′

1 + βvβu′

, (6.4)

γu = γvγu′(1 + βvβu′), (6.5)

γuβu = γvγu′(βv + βu′). (6.6)

These three formulas are algebraically equivalent i.e. if any one of them is postulated,
the other two may be obtained by purely algebraic manipulation of the first. It is the
versions (6.5) and (6.6) which have a similar structure to that of the space-time Lorentz
transformation equations that have the most transparent physical interpretations.

The formula (6.5) gives the transformation of time dilation factor between the frames
S’ (where the factor is γu′) and the frame S (where the factor is γu). In this case the
moving clock in the time dilation experiment has the velocity u′ in the frame S’ but is
observed in the frame S. The fixed initial parameters of the problem are the velocities v
and u′. A direct application of this is to the analysis of special-relativistic effects in the
Hafele-Keating experiment [16, 17, 18, 19] where the frame S is the non-rotating Earth-
Centered-Inertial (ECI) frame in which ‘coordinate time’ t is specified, u′ is the speed of a
clock-carrying aircraft relative to the surface of the Earth and v = ΩER⊥, where R⊥ is the
distance from a clock at rest on the Earth’s surface to the axis of rotation of the Earth, and
ΩE is the angular velocity of rotation of the Earth. Choosing positive or negative values
of u′ (i.e. considering flights in the West-East or East-West directions respectively) (6.5)
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predicts the asymmetric time-dilation effect between Earth-bound and airborne clocks
that was verified [18, 19] in the Hafele-Keating experiment. The experiment demonstrated
conclusively that the time dilation effect between the clocks did not depend only on the
relative velocity u′ of the two clocks but was given by (6.5) for an airborne clock and by
(3.3) for the Earth-bound one.

Introducing the relativistic energy and momentum in the frames S and S’ of an object,
of Newtonian mass m, according to the relations [20]:

E ≡ γumc2, p ≡ γuβumc, (6.7)

E ′ ≡ γu′mc2, p′ ≡ γu′βu′mc (6.8)

enables (6.5) and (6.6) to be written as:

E = γv(E
′ + cβvp

′), (6.9)

p = γv(p
′ +

βv

c
E ′) (6.10)

which are the well-known Lorentz transformation formulas for relativistic energy and
momentum. They follow directly from (6.5) and (6.6) by multiplying throughout by the
constant factor mc2 and using the definitions in (6.7) and (6.8). Note that the velocity
parameters v, u, u′ which appear in (6.5) and (6.6) are all defined as the velocities of
objects in particular inertial frames (v and u in S and u′ in S’), and no consideration
is given to the observation of relative velocities of different objects in the same inertial
frame which are described instead by the RRVTR (3.8). Indeed relativistic energy and
momentum are attributes of a single physcial object that are always defined in a particular
inertial frame. It is clear that the relative velocity, which is an attribute of two distinct
physical objects, in a particular frame, cannot enter in any way into the definition of
the energy or momentum of the objects in this frame. A ‘relative velocity’ between two
objects is a meaningful physical concept in any reference frame but not ‘relative energy’
or ‘relative momentum’ of the objects.

It is interestimg to note that, as previously pointed out in the Appendix of [1], the
RRVTR, unlike the RPVAR, does not have mathematical group properties. The inverse
of the transformation:

βu′ = γv(βu − βv) (6.11)

is

βu =
βu′

γv

− βv (6.12)

which has a different algebraic structure. The inverse of the RPVAR

βu′ =
βu − βv

1 − βuβv

(6.13)

is

βu =
βu′ + βv

1 + βu′βv

(6.14)

that has a similar algebraic structure resulting in a group property and is given by the
replacements v → −v, u′ ↔ u, i.e. relabelling of variables, in (6.13). Making the same
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replacements in (6.11) gives not the inverse (6.12) but instead the unphysical equation
βu = γv(βu′ + βv). Axiomatic derivations such as those used to derive the RPVAR [12] or
the Lorentz transformations [21], by postulating a group property, cannot, therefore, be
used to derive the RRVTR.

Only coordinate-frame independent angular, length and time intervals have been con-
sidered in the calculations presented above. In the case that the frame S’ is a time-
independent rather than a comoving inertial frame, corresponding to the limits ρ → ∞,
Ω → 0 , v = ρΩ = constant of these calculations, the world line of an object at rest in
the frame S’ can be written, in S’ and S respectively, as

x′ = L, x(t) = vt + L. (6.15)

Here particular spatial coordinate systems have been introduced in S’ and S. From the
world line equation in S it can be seen that L ≡ x(t = 0), while the freedom of choice of
coordinate origin in S’ has been used to set x′ = x(t = 0) ≡ L. The world line equations in
(6.15) are the same in both Galilean and Special relativity. In Galilean relativity time is
universal, t′ = t, whereas in Special relativity, with a particular choice of clock calibration
constants the coordinate-independent time dilation relation for time intervals ∆t = γv∆t′

can be written in terms of synchronised clock settings (epochs) in the frame S, (S’) t (t′)
as

t = γvt
′. (6.16)

Equations (6.15) and (6.16) provide a complete description, within a particular choice of
space and time coordinate systems, of the space-time geometry of an arbitary object at
rest in the frame S’ and observed from the frame S. In Galilean relativity the world lines
in (6.15) are unchanged and the time dilation relation (6.16) is replaced by t′ = t.

The world line equation of the object in S and the time dilation relation (6.16) may
be combined in the following manner:

t′ =
t

γv

=
tγv

γ2
v

= γv

[

t − v2t

c2

]

= γv

[

t − v(x(t) − L)

c2

]

. (6.17)

This is the Lorentz transformation of time between the frames S and S’. Combining the
world lines equations in the frames S and S’ in (6.15) into a single equation as:

x′ − L = γv[x(t) − L − vt] = 0 (6.18)

gives the space Lorentz transformation equation corresponding to the time transformation
(6.17). Note however that the factor γv in (6.18) is discretionary. The formula is equivalent
to the two world line equations in (6.15) when γv is replaced by an arbitary finite function
of v/c. The standard Lorentz transformation, as derived by Einstein [10] corresponds to
a particular choice of coordinate system in the frame S such that L ≡ x(t = 0) = x′ = 0.
i.e. the object is placed at the coordinate origins of both S and S’ when t = 0.

Consider now two objects at different fixed positions in S’, x′ = L1, L2 with the same
coordinate systems in S and S’ as in (6.17) and (6.18), (i.e. t = t′ = 0 when x1 = L1,
x2 = L2) to give the transformation equations:

t′1 = γv

[

t1 −
v(x1(t1) − L1)

c2

]

, (6.19)
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t′2 = γv

[

t2 −
v(x2(t2) − L2)

c2

]

, (6.20)

x′

1 − L1 = γv[x1(t1) − L1 − vt1], (6.21)

x′

2 − L2 = γv[x2(t2) − L2 − vt2]. (6.22)

These equations show that the events, on the world lines of the objects, where x1 = L1

and x2 = L2, are simultaneous in both S and S’: t1 = t2 = t′1 = t′2 = 0. Also since t1 = γvt
′

1

and t2 = γvt
′

2, it follows that when t′1 = t′2 = t′ then also t1 = t2 = t, for all values of t′.
Simultaneous events on the world lines of the objects in the frame S are also simultaneous
in S — there is no ‘relativity of simultaneity’ (RS) effect. Setting t1 = t2 = t in (6.21)
and (6.22) i.e. considering the spatial positions of the objects at the same instant in the
frame S, it follows from these equations that, for arbitrary and independent values of the
parameters of v, γv: :

∆x ≡ x2(t) − x1(t) = L2 − L1 = x′

2 − x′

1 ≡ ∆x′ (6.23)

consistent with Eq.(4.4) above. Length intervals are the same in the frames S and S’
—there is no ‘length contraction’ (LC) effect.

In the standard Lorentz transformation equations, the object is placed at the origin
of coordinates in S’, i.e. L = 0 in (6.15) and (6.16):

t′(x′ = 0, t) = γv

[

t − vx(x′ = 0, t)

c2

]

(6.24)

x′ = γv[x(x′ = 0, t) − vt] = 0 (6.25)

The spurious RS and LC effects of conventional Special relativity theory occur when (6.24)
and (6.25) instead of (6.17) and (6.18) are assumed to be also valid for an object not at
the origin of coordinates in S’, i.e. when x′ = L′ 6= 0:

t′(x′ = L′, t) = γv

[

t − vx(x′ = L′, t)

c2

]

(6.26)

x′ = L′ = γv[x(x′ = L′, t) − vt] 6= 0 (6.27)

Subtracting (6.25) from (6.27) gives

L′ = γv[x(x′ = L′, t) − x(x′ = 0, t)] (6.28)

or

x(x′ = L′, t) − x(x′ = 0, t) ≡ ∆x =
L′

γv

=
∆x′

γv

(6.29)

which is the LC effect. Subtracting (6.24) from (6.26) and using (6.29), gives on rear-
ranging

t′(x′ = L′, t) = t′(x′ = 0, t) − γvv∆x

c2
(6.30)

which is the RS effect, since the fixed epoch t in the frame S corresponds to different
epochs, in the frame S’, for objects at x′ = 0 and x′ = L′.
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The correct transformation equations for an object at x′ = L′, (6.17) and (6.18) with
L = L′, differ from the incorrect ones (6.26) and (6.27) by additive constants on the right
sides of the equations. That is the former equations may be written:

t′ = γv

[

t − vx(t)

c2

]

+ T, (6.31)

x′ = γv[x(t) − vt] + X (6.32)

where

T =
γvvL′

c2
=

γvv∆x

c2
, (6.33)

X = L′(1 − γv). (6.34)

It can be seen that the RS term on the right side of (6.30) is exactly cancelled by the
constant T in the correct time transformation equation (6.17) or (6.31). The necessity to
include the constants T , X to correctly describe the world lines of objects at different fixed
positions in the frame S’ was clearly stated by Einstein, in the original Special relativity
paper [10], immediately after the derivation of the ‘standard’ Lorentz transformation
equations (6.24) and (6.25):

Macht man über die Anfanslage des bewegten Systems und über den
Nullpunkt von τ keinerlei Voraussetzung, so ist auf den rechten Seiten dieser
Gleichungen je eine additive Konstante zuzufügen

or, in English:

If no assumption whatever be made as to the initial position of the moving
system and as to the zero point of τ an additive constant is to be placed on
the right side of these equations

The quantity τ is t′ in the notation of the present paper. This injunction was not however
followed, to the writer’s best knowledge, by Einstein, or any other author, until the work
reported in [22].

The conclusions of this paper for space-time geometry in flat space and the transfor-
mation of relative velocities between inertial frames are as follows:

Galilean relativity

x′

1 = χ1, x1(t1) = vt1 + χ1 ; x′

2 = χ2, x2(t2) = vt2 + χ2. (6.35)

t′1 = t1 ; t′2 = t2. (6.36)

Special relativity

x′

1 = χ1, x1(t1) = vt1 + χ1 ; x′

2 = χ2, x2(t2) = vt2 + χ2. (6.37)

t′1 = γvt1 ; t′2 = γvt2. (6.38)

The world line equations in (6.35) and (6.37) are the same in Galilean and Special rela-
tivity. As shown above, the world line equations of an object in S and S’ are equivalent to
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the space Lorentz transformation equation and the time transformation equation follows
(see Eq. (6.17) above) on combining the world line equation in the frame S with the time
dilation relation in (6.38). Considering simultaneous events on the world lines of objects
at rest in S’: t′1 = t′2 it can be seen from (6.36) or (6.38) that t1 = t2 so that the events
are simultaneous in S —there is no RS effect. It also follows in both Galilean and Special
relativity from (6.35) or (6.37) that

x′

2 − x′

1 ≡ L′ = χ2 − χ1 = x2(t) − x1(t) ≡ L. (6.39)

Spatial separations of objects are therefore invariant as shown in Eq. (4.4) above and there
is no LC effect. How the latter, as well as the correlated RS effect, arise from misuse of
the Lorentz transformation equations have been explained above.

If two objects move at speeds v and u, parallel to the x-axis in the frame S, the velocity
of the object with speed u, in the rest frame of the object with speed v, u′, which is the
relative velocity of the two objects in the frame S’, is given by the relations:

Galilean relativity

u′ = u − v. (6.40)

Special relativity

u′ = γv(u − v). (6.41)

In Galilean relativity, but not in Special relativity, the magnitude of relative velocity
of the two objects is the same in the frames S and S’, whereas. in Special relativity,
the magnitude of the relative velocity is greater by the factor γv in the frame S’. An
important special case of (6.41) is u = 0, i.e. if the magnitude of the relative velocity
between objects at rest, one in the frame S’, the other in the frame S, is v in the frame S
, then it is also v in the frame S’ in Galilean relativity , but instead it is γvv in Special
relativity. The Reciprocity Principle [2] which is tacitly assumed to hold in Einstein’s
original Special relativity paper [10] and in the subsequent literature and text books on
relativity is therefore invalid in Special relativity.

As shown above, the conventional RPVAR is physically equivalent to the transfor-
mation laws of relativistic energy and momentum (6.9) and (6.10). These equations
transform a kinematical configuration of a single physical object in one frame into that
of a single physical object in another frame. This transformation has no relevance to the
transformation of the relative velocity of two distinct physical objects from one inertial
frame to another, which is correctly given, not by the RPVAR of Eq. (5.1), but by the
RRVTR of Eq. (3.8). This assertion is a necessary consequence of the analysis of the
thought experiment considered in the present paper and is experimentally confirmed by
the existence of the Sagnac effect [1].
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