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Abstract

The role of preferred frames for light propagation and time dilation in the region
of a massive, spherical, gravitating bodies, where, according to general relativity,
spacetime curvature is described by the Schwarzschild metric equation, is discussed
in the context of the Sagnac effect (for light propagation) and the Hafele-Keating
experiment (for time dilation). Predictions for both translational and rotational
motion relative to the preferred frame are calculated up to order (v/c)3. Different
published theoretical calculations of the Sagnac effect are critically reviewed. The
conflation in the literature of measured time differences in Sagnac experiments (a
classical order v/c effect) and time dilation (a relativistic order (v/c)2 effect) is also
discussed.
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1 Introduction

Insofar as the conclusions of the present paper are likely to be found controversial,
as they indicate important limitations on the applicability of text-book special relativity
(SR) to space-time experiments performed on the surface of the Earth, or, more generally
in the region of any massive body surrounded by a gravitational field, it is important to
state, at the outset, that all the lowest order (in v/c ) predictions that are discussed below
have been experimentally verified. On the theoretical side, it is assumed only that space-
time geometry in the region of a spherical massive body is described by the Schwarzschild
metric [1, 2] as prescribed by general relativity (GR). This has also been verified in the
three classical post-Newtonian tests of GR1, as well as by the Shapiro radar-echo-delay
experiments [3] that are crucial in demonstrating the existence of a preferred frame for
propagation of light at speeds less than, but close to, the free space vacuum value, c, in
the vicinity of the Sun.

The crucial experiments, some consequences of which, for the understanding of space-
time physics, are explored in the present paper are, in chronological order:

(i) The Sagnac interferometer [4]. In this experiment, published in 1913, light beams
from a beam splitter followed, in opposite directions, a seven-sided path attached to
a rotating turntable. After recombination of the beams the interference pattern was
recorded on a photographic plate. A shift in the interference fringes proportional
to the angular velocity of rotation and to the area enclosed by the light paths was
observed. An English translation of the conclusion of the experiment is:

‘The results of the measurements show that, in the surrounding space, light propa-
gates with the speed c independently of the movement of the light source and the
optical system. This property is the experimental characteristic of the luminiferous
aether.’

As will be discussed in Section 3 below, this conclusion, though essentially correct,
and consistent with the prediction of GR, is too strong, since a possible uniform
motion with respect to the preferred frame for light propagation is not excluded by
the results of the experiment. The analysis of a similar experiment with circular
geometry in Section 2 below shows that conventional velocity transformation for-
mulas of SR are incompatible with the observations of Sagnac [5]. The applicable
relativistic formulas for the transformation of relative velocities in the Sagnac ex-
periment were given by Post [6] in 1967, and later, independently, by Klauber [7].
Historical reviews of Sagnac-type experiments are to found in Refs. [6, 8, 9].

(ii) The Michelson-Gale Sagnac experiment [10]. This was published in 1925 and con-
sisted of a rectangular interferometer of dimensions 640m by 320m where counter-
rotating light beams travelled in evacuated tubes installed in shallow trenches. The
rotational motion of the Earth was detected as a consequence of the existence, at
the surface of the Earth, of a preferred frame for propagation of light at a speed
close to c. This preferred frame is the ECI (Earth Centered Inertial) frame also
used for analysis of the Sagnac effect in the GPS system [11]. It is an instantaneous

1These are the gravitational red shift of spectral lines, the deflection of light by the Sun and the
precession of the perihelion of Mercury. See Chapter 8 of Ref. [2].
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inertial frame co-moving with the centroid of the Earth with axes pointing towards
fixed positions on the celestial sphere.

(iii) The Shapiro radar-echo-delay experiments [3]. In these experiments microwave sig-
nals were bounced off the surfaces of Mercury and Venus and detected in an Earth-
bound radio telescope. From the measured time delays of the signals their slowing
down, in the gravitational field of the Sun, in accordance with the GR prediction,
was observed. Close to superior conjunction for the case of Venus a delay of 180µs
due to gravitational effects in a round-trip time of 1720s was seen, corresponding
to an average microwave signal speed only one part in 107 less than c. This demon-
strates that the SCI (Sun Centered Inertial) frame, defined similarly to the ECI, is
a preferred one for propagation of light at speeds close to c in the region of the Sun.

(iv) The Hafele-Keating experiment (HKE) [12, 13]. In this experiment, published in
1972, an array of four caesium-beam atomic clocks was flown around the Earth at
low latitudes in commercial airliners, once in a west to east and once in an east
to west direction. The time intervals recorded by the clocks were compared, in
each case, with time intervals recorded during the flights by geostationary precision
clocks at the U.S. Naval Laboratory. The analysis of the experiment [14] made
direct use of the Schwarzschild metric equation in which coordinate time is defined
as that registered by a clock, in the ECI frame defined above, sufficiently distant
from the Earth that the gravitational field of the latter may be neglected. The
airborne and geostationary clocks are slowed down relative to a clock registering
coordinate time by a time dilation effect, predicted by the Schwartzschid metric
equation (but also calculable, at lowest order, by SR) depending on their speed in the
ECI frame. The airborne clocks are also speeded-up, relative to the geostationary
ones, by the gravitational blue shift of GR resulting from a higher gravitational
potential. This experiment demonstrated that the relative rate of two clocks does
not depend, as naively expected in SR, only on their relative speed. This is due to
the preferred nature of the ECI frame in the calculation of time dilation effects in
the experiment [15].

(v) The Fibre Optic Conveyor (FOC) Sagnac experiments [16, 17]. These, recently-
performed, experiments demonstrate that the Sagnac effect occurs not only for
rotational motion, as in Sagnac’s original experiment, and in the Michelson-Gale
experiment, but also for purely translational motion where both the interferometer
proper frame and the preferred light propagation frame are inertial. Thus the lowest
order formula for the Sagnac phase shift in a rotating interferometer:

∆φ =
8π~Ω · ~A

λ0c
(1.1)

(where ~Ω is the angular velocity vector, ~A a vector perpendicular to the interferom-
eter plane, A is the area bounded by the light paths, and λ0 and c are the vacuum
wavelength and speed of light) is replaced by the more general formula:

∆φ =
4π

λ0c

∮

~v · d~s (1.2)

where ~v is the velocity, in the preferred frame (the ECI frame on the surface of the
Earth) of the element d~s of the light path, which is valid for both rotational and
translational motion relative to the preferred frame.
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The preferred nature of the ECI frame for light propagation near the Earth, largely over-
looked after the publication of the Michelson-Gale experiment, was rediscovered in an ex-
periment published in 1976 in which clocks in Rosnan (U.S.A.) and Koshima (Japan) were
synchronised using microwave signals passing via a geostationary satellite transceiver [18].
Due to the rotation of the Earth the signals arrived in Japan ≃ 328ns earlier than if the
relative speed of the signals and the receiver had been c.

Properly allowing for light signal speeds different from c in the proper frames of GPS
receivers —the GPS ‘Sagnac effect’— is essential for the accuracy of the system. To first
order in the speed vΩ of the receiver in the ECI frame, the modification of the range, R,
of signal transmission due to the Sagnac effect is given by the formula [19, 20]:

R = R(t) + ~R(t) · [~Ω × ~rR(t)]/c = R(t) + 2~S · ~Ω/c = R(t) + 2ΩAE/c. (1.3)

Here t is the epoch, in the ECI frame, of transmission of the signal, t + τ its reception
epoch, and R = cτ . The vectors ~rR(t) and ~rT (t) specify the positions of the receiver

and transmitter respectively, relative to the center of the Earth. The vector ~R(t) ≡
~rR(t) − ~rT (t) is directed from transmitter to receiver and ~Ω is the angular velocity of

the Earth. ~S ≡ ~rT (t) × ~rR(t)/2 is the directed area of a triangle with vertices at the
center of the Earth, the transmitter and the receiver at the epoch of transmission. The
area AE is that of the projection of this triangle on to the equatorial plane of the Earth.
AE is positive (negative) for eastward (westward) signal propagation. The Sagnac effect
correction in the GPS is numerically important, it typically amounts to 30m as compared
to a nominal precision of 10m or better. After correction for the Sagnac effect, analysis of
GPS data showed [21] that the speed of microwave signals in the ECI frame was constant
within an uncertainty: δc/c < 5 × 10−9.

Due to the gravitational field of the Earth, as in the radar-echo-delay experiments
due to the gravitational field of the Sun, the speed of the microwave signals in the ECI
frame is slightly less than c. To give an idea of the magnitude of this reduction, consider
the time-of-passage of a signal from a GPS satellite at the horizon to a receiver on the
surface of the Earth. In this case the signal path is tangent to the latter. Solving the
Schwarzschild metric equation for this case [22] gives for the time-of-passage:

T =

√
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 (1.4)

where RS = 26.6 × 106m is the radius of the (circular) orbit of the GPS satellite [11],
RE = 6.38 × 106m is the radius of the Earth and ME = 5.97 × 1024kg is the mass of
the Earth. The retardation due to the terms proportional to the gravitational constant
G amounts to 74ps in the time-of-passage of 86ms. For this configuration therefore the
signal speed is equal to c at a precision of one part in 109.

The existence of preferred frames —the ECI for the Earth, the SCI for the Sun—
which constitute effective ‘local’ aethers’, in which light propagates at a speed close to
c, was previously pointed out by Su [24]. The same author also proposed a ‘local aether
model’ of electromagnetic wave propagation [25] which was described as a ‘new classical
model’. There is no need for any such new model, however, since the existence of such
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‘local aethers’ is, as the calculation just presented shows for the case of the Earth, a
straightforward prediction of GR.

Another important remark due to Su [24] concerns the interpretation of the Michelson-
Morley experiment [23] and its successors [27, 28]:

‘...the propagation mechanism in the Michelson-Morley experiment in no way can be
different from that in the GPS and earthbound microwave links from the stand point of
any plausible propagation model’2

In a Michelson-Morley experiment with arms of equal length L and the longitudinal
arm aligned with the direction of the velocity ~V of the interferometer relative to the
preferred frame in which the speed of light is c, the phase shift given by exchange of
longitudinal and transverse arms is:

∆φMM =
4πLV 2

λ0c2
+ O[(V/c)4]. (1.5)

In the conventional interpretation of the experiment, from which both the non-existence
of the aether and the existence of relativistic length contraction in SR or, alternatively
a Lorentz-Fitzgerald contraction effect in aether theories, have been concluded, V is set
equal to the orbital velocity of the Earth around the Sun of ≃ 30 km/s. This is tantamount
to assuming that the SCI frame is the aether rest frame in the immediate vicinity of the
Earth. However the existence of the Sagnac effect, and in particular the result of the
Michelson-Gale experiment, as well as GR, require that the ‘local aether’ near the surface
of the Earth, where the Michelson-Morley experiment was performed, should instead be
assigned to the ECI frame. In this case, V = vΩ = ΩERE cos λ ≃ 300m/s where λ is
the latitude —the speed of the interferometer in the ECI fame due to the rotation of the
Earth. The value of ∆φMM is then expected to be a factor 10−4 smaller than when V is the
Earth’s orbital velocity. The Kennedy-Thorndyke experiment [27] which had a sensitivity
of order 10−5 of an interference fringe, set an upper limit of ≃ 10km/s on V , still a factor
about 30 times larger than vΩ. The Michelson-Gale experiment successfully detected
the ‘local aether’ due to the gravitational field of the Earth, because the Sagnac phase
shift is an order V/c effect as compared to an order (V/c)2 one for the Michelson-Morley
experiment and its successors. These experiments were simply not sensitive enough to
observe any effect.

The present paper presents relativistic analyses of photonic Sagnac experiments and
of the HKE including not only the lowest order predictions, to be found in the previous
literature, but also, in a systematic way, (v/c)2 corrections, as well as the case of combined
rotational and translational motion for Sagnac interferometers with light-path refractive
index n = 1 and n > 1. Similarly, for the HKE, the effect of an arbitary choice of inertial
frame for the definition of coordinate time in the calculation of the SR contribution is
considered.

The plan of this paper is the following: the following section analyses, following the
space-time geometric method of Langevin [29] and Post [6], a rotating circular Sagnac

2This is a good example of an application of the second of Newton’s ‘Rules for the study of natural
philosophy’: ‘...the causes assigned to natural effects of the same kind must be, as far as possible, the
same.’ [26].
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interferometer. In Section 3, a similar analysis of combined rotational and translational
motion is presented. Section 4 analyses the FOC with which a purely translational Sagnac
effect was demonstrated [16, 17]. Analyses in both GR and SR of the HKE are found in
Section 5. Section 6 contains a critical review of some other derivations of the Sagnac
effect in the literature. In the final section the fundamental physical bases of the photonic
Sagnac effect and the HKE are compared and contrasted. To add further perspective to
the discusson, the lowest order Sagnac effect for massive particles is also briefly discussed
and compared with the photonic one, in the context of Feynman’s space-time formulation
of quantum mechanics. Also considered in this section is the erroneous conflation in
the literature of the photonic Sagnac effect and the HKE. Some calculational details are
relegated to two appendices.

A few words on nomenclature and ontology. In the description of the photonic Sagnac
effect the entity which propagates, and the times-of-passage of which are calculated, are
generally called ‘light beams’ or ‘light signals’ but, following Feynman’s space-time for-
mulation of quantum mechanics, can also be considered, more fundamentally, to be single
photons. Indeed in Sagnac interference it is a single photon following alternative paths,
which, following Dirac’s prescription, ‘interferes with itself’3 The same is true for an
electron in the interferometer discussed in Section 7.

2 The rotational Sagnac effect

To discuss the physical principles that underlie the Sagnac effect it is convenient,
following Post [6], to consider an idealised interferometer where light beams part back-to-
back from a beam splitter (BS) and arrive head-on at opposite sides of the latter having
followed circular paths along which they propagate at the vacuum light speed, c, in the
laboratory system. The case where beams instead propagate in a transparent medium
of refractive index n at rest in the interferometer frame —which may be appropriate
when the beams are guided by fibre-optic cables— will considered later. The Sagnac
effect occurs when the interferometer is rotated, as a consequence of different times-of-
passage back to the beam splitter (where they are combined) of the clockwise-rotating
and counterclockwise-rotating beams. The geometrical configuration, in the laboratory
frame, for a clockwise rotating circular interferometer is shown in Fig. 1a. At epoch t = 0
light signals exit from the beam splitter in opposite directions and follow circular paths of
radius R. The positions of the clockwise rotating signal, counterclockwise rotating signal
and the beam splitter are specified by the angles φ+, φ− and Φ respectively, relative to a
fixed direction in the laboratory frame. At t = 0, φ+ = φ− = Φ = 0. The corresponding
configuration in the interferometer frame, that rotates with constant angular velocity Ω
in a clockwise direction, is shown in Fig. 1b. The clockwise (counterclockwise) rotating
signals have speeds, in the interferometer frame, c′+ (c′−) relative to local points of the

3 Each photon interferes only with itself, Interference between two different photons never occurs’ [30].
In the photonic Sagnac interferometer there is indeed a single photon with two corresponding probability
amplitudes that interfere. Dirac’s second assertion is however false, witness the Hanbury-Brown and
Twiss experiments [31, 33].
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interferometer, and angular separations φ+ (φ−) from BS where:

φ± = φ± ∓ Φ. (2.1)

Since the relative velocity of the counterclockwise-rotating signal and BS is greatest, it
arrives back before the clockwise-rotating one. As shown in Fig. 2, the beam splitter is at
position BS− when the counterclockwise-rotating signal signal arrives back and at position
BS+ when the clockwise-rotating signal arrives back. Denoting the times-of-passage in
the laboratory frame of the clockwise-(counterclockwise-)rotating signals by T+(T−) then:

T± =
2πR

c±
(2.2)

where:
c± = c ∓ ΩR. (2.3)

Since a clock situated at BS moves with constant speed ΩR relative to the laboratory
system it will be subject to a time dilation (TD) effect such that:

∆t = γΩ∆t′ (2.4)

where ∆t and ∆t′ are time intervals recorded by a clock at rest in the laboratory and one

comoving with BS respectively and γΩ ≡ 1/
√

1 − β2
Ω; βΩ ≡ ΩR/c. The times-of-passage

of the signals T ′
+, T ′

− in the comoving frame of BS are then given as:

T ′
± =

2πR

c′±
=

T±c±
c′±

=
T±

γΩ

. (2.5)

It follows from (2.3) and (2.5) that:

c′± = γΩc± = γΩ(c ∓ ΩR). (2.6)

This is the relativistic transformation formula for relative velocities of BS and a local
light signal between the laboratory frame and the instantaneous comoving inertial frame
of the beam splitter.This formula has been previously derived by Klauber in a relativistic
analysis of the Sagnac effect [7] that is discussed in Section 6 below. The corresponding
formula for relative angular velocities:

ω′
± = γΩ(ω ∓ Ω) (2.7)

where ω′
± ≡ dφ±/dt′ = c′±/R , ω ≡ dφ±/dt = c/R was previously derived by Post [6].

Note the difference between (2.6) and the conventional relativistic parallel velocity
addition relation (RPVAR) due to Einstein [34]:

c′±,SR =
c ∓ ΩR

1 ∓ cΩR
c2

= c. (2.8)

Since, in a Sagnac interferometer, the interference effect is calculated in the comoving
frame of the beam splitter, the RPVAR predicts that in this frame the counter rotating
beams arrive simultaneously, as when Ω = 0, so that no rotation-dependent Sagnac phase
shift can occur. That this is the case i.e. that conventional special relativity theory is
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incompatible with the observed existence of the Sagnac effect— was already pointed out
in 1937 by Dufour and Prunier [35]. Since the Sagnac effect is observed to respect the
prediction of Eqs. (2.5) and (2.6) which is, for the phase shift between the two beams:

∆φCG = 2πν(T ′
+ − T ′

−) =
8πΩAγΩ

λ0c
=

8πΩA

λ0c

[

1 +
β2

Ω

2

]

+ O(β5
Ω) (2.9)

(where the suffix ‘CG’ stands for ‘circular geometry’, ν is the frequency, λ0 the vacuum
wavelength of the light and A = πR2) it is clear that the RPVAR is not applicable to the
analysis of the Sagnac effect [5]. For a discussion of the correct physical interpretations
of the relativistic relative velocity transformation relation (RRVTR), Eq. (2.6) and the
RPVAR, Eq. (2.8), see Refs. [36, 37, 5] and Section 5 below.

Figure 1: Angular coordinates and velocities of clockwise rotating (LS+) and counter-
clockwise rotating (LS−) light signals in a circular Sagnac interferometer. a) relative to
a fixed direction in the laboratory frame. b) relative to the position of the beam splitter,
BS, in the co-rotating frame.
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Figure 2: Laboratory frame configuration of counter rotating light signals LS+ and LS−

at the instants of return to the beam splitter. See text for discussion.
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The case that light signals propagate in a transparent medium of constant, frequency-
independent refractive index n within an interferometer with a circular geometry will
now be considered. Taking into account the dragging effect of the moving medium on the
speed of light, Eqs. (2.3) become, for arbitary n:

c±(n) =
c

n
± f(n)ΩR ∓ ΩR (2.10)

where f(n) is the Fresnel-Fizeau dragging coefficient: f(n) ≡ 1 − 1/n2. Eqs. (2.5) are
then modified, for n 6= 1 to:

T ′
±(n) =

T±(n)

γΩ

=
2πR

γΩ( c
n
± f(n)ΩR ∓ ΩR)

=
2πR

γΩ( c
n
∓ ΩR

n2 )
(2.11)

which gives a Sagnac phase shift:

∆φCG(n) = 2πν(T ′
+ − T ′

−) =
4π2Rν

γΩ

[

1
c
n
− ΩR

n2

− 1
c
n

+ ΩR
n2

]

=
8πAΩ

γΩcλ0

[

1 −
(

ΩR
cn

)2
]

=
8πAΩ

cλ0

γΩ(n)2

γΩ

(2.12)

where γΩ(n) ≡ 1/
√

1 − (ΩR/cn)2. Comparison with Eq. (2.9) shows that, except for

corrections of order (ΩR/cn)2 and (ΩR/c)2, the Sagnac phase shift is the same as the
case where n = 1 and the light signals propagate in vacuum. The conclusion that there
would be no observable difference in Sagnac phase shifts for n = 1 and n > 1 is due to
Harzer [38] and was first experimentally confirmed by Pognay [39](see Ref. [6]).

The above calculation, for an interferometer with circular geometry rotating about its
symmetry axis gives, at order βΩ, the lowest order (LO) phase shift of:

∆φCG
LO =

8πΩA

λ0c
(2.13)

regardless of refractive index of the material, at rest in the interferometer frame, traversed
by the interfering light beams.

It was pointed out in 1935 by Prunier [40] that the experimentally verified Sagnac
phase shift (2.13), for the case n > 1 is incompatible the hypothesis used by von Laue [41]
to derive the Fresnel-Fizeau dragging coefficient by use of the Einstein [34] relativistic
velocity transformation formula:

c+(n) =
c
n

+ ΩR

1 + cΩR
nc2

=
c

n
+ ΩR

(

1 − 1

n2

)

+ O

[

(

ΩR

c

)2
]

since this assumes the speed of light in the co-moving frame of the interfermeter is c/n
and not γΩ(c/n − ΩR/n2) as in Eq. (2.11). If this were the case then the Sagnac effect
would vanish.
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It will now be demonstrated that for a planar interferometer with light paths consisting
of connected line segments, and for an arbitary axis of rotation of the angular velocity
vector ~Ω, (2.13) generalises to:

∆φLO =
8π~Ω · ~A

λ0c
(2.14)

where A = | ~A| is the area enclosed by the light paths and ~A is perpendicular to the
interferometer plane. The first step in the calculation is to find the transit time of a light
signal along an arbitary constituent line segment. Since relativistic corrections due to
time dilation are neglected, the calculation may be performed either in the laboratory
frame or in the co-rotating frame of the interferometer. The geometrical configuration of
a particular segment AB of length s is shown, in the laboratory frame, in Fig. 3. The
axis of rotation passes through the point O and the angular velocity vector ~Ω is inclined
at angle λ relative to the z-axis which is perpendicular to the interferometer plane. The
y-axis is chosen so that ~Ω lies in the y − z plane. With this choice of coordinate system
the position vector ~r of the point P on the segment AB, a unit vector ŝ in the direction
of the light signal LS, and the angular velocity vector are given, in terms of unit vectors
ı̂, ̂, and k̂, parallel to the x, y and z axes, as:

~r = r(̂ı sin α + ̂ cos α), (2.15)

ŝ = ı̂ cos β − ̂ sin β, (2.16)

~Ω = Ω(̂ sin λ + k̂ cos λ). (2.17)

The laboratory frame velocity of the point P, due to the angular velocity Ω, is:

~v = ~r × ~Ω = Ωr(̂ı cos α cos λ − ̂ sin α cos λ + k̂ sin α sin λ). (2.18)

The velocity component of the point P in the direction of the light signal is then

v‖ ≡ ŝ · ~v = Ωr(cos α cos β + sin α sin β) cos λ

= Ωr cos(β − α) cos λ

= Ωr cos φ cos λ (2.19)

since the geometry of Fig. 3 gives: π/2 = (π/2 − β) + φ + α or φ = β − α. Eq. (2.19)
implies, as shown in Fig. 3, that the projection of ~v into the xy plane is of length Ωr cos λ.
The time intervals dt± for the light signals to cross the interval ds of the segment AB
around P are:

dt± =
ds

c±r
=

hdφ

cos2 φ(c ∓ Ωh cos λ)
(2.20)

where rdφ = ds cos φ, h = r cos φ and c±r = c∓Ωh cos λ. The +(−) signs indicate that ~v‖
is parallel (anti-parallel) to the direction of the light signal.

Integrating over φ in (2.20) and considering the geometry of Fig. 3:

∫ dφ

cos2 φ
=
∫

d(tan φ) = tan φ2 + tan φ1 =
s2

h
+

s1

h
=

s

h
(2.21)

so that, neglecting terms of order ≥ (Ωh/c)2, (2.20) and (2.21) give:

t± =
s

c
± shΩ cos λ

c2
=

s

c
± 2∆(ABO)

Ω cos λ

c2
(2.22)
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Figure 3: Geometrical definitions in the laboratory frame for a light signal LS crossing a
straight light path AB. AB rotates with angular velocity ~Ω about the point O. a) xy plane

that contains the light path AB.b) yz plane that contains ~Ω. See text for discussion.
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Figure 4: Geometrical definitions for a rotating plane light circuit ABCDEA. Light prop-
agation in each segment is described as in Fig. 3. See text for discussion.
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where ∆(ABO) is the area of the triangle ABO. The above calculation neglects the motion
of the points A and B in Fig. 2 during the passage of the light signal between them. As
shown in Ref. [5] taking into account this motion gives only order (Ωh/c)2 corrections to
Eq. (2.22).

Consider now, as shown in Fig. 4, the interferometer constituted by five line segments
AB, BC, CD, DE and EA. The interferometer and the light signal both rotate in a
clockwise direction. For segments AB, BC and CD, ~v‖ is in the same direction as the light
signal whereas for DE and EA it is in the opposite direction. The time-of-passage of the
clockwise (CW) rotating signal is therefore:

TCW = t+(1) + t+(2) + t+(3) + t−(4) + t−(5)

=
5
∑

i=1

si

c
+

2Ω cos λ

c2
(∆(ABO) + ∆(BCO) + ∆(CDO) − ∆(DEO) − ∆(EAO))

=
5
∑

i=1

si

c
+

2Ω cos λ

c2
A. (2.23)

Here A =Area(ABCDE) is the area enclosed by the light path. In a similar manner the
time-of-passage of an counterclockwise (CCW) rotating signal is:

TCCW = t−(1) + t−(2) + t−(3) + t+(4) + t+(5)

=
5
∑

i=1

si

c
− 2Ω cos λ

c2
A. (2.24)

The Sagnac phase shift is therefore:

∆φLO = 2πν(TCW − TCCW) =
8πνΩ cos λA

c2
=

8π~Ω · ~A

cλ0

(2.25)

where ~A is perpendicular to the plane of the interferometer in the sense of a right-handed
screw undergoing counterclockwise rotation around its boundary. The generalisation of
this calculation to the case where the light path is an arbitary N-sided plane polygon is
evident.

3 The Sagnac effect with uniform rotational and trans-

lational motion

In this section the circular interferometer considered in Figs. 1 and 2 is assumed to
undergo uniform translational motion at speed V in the laboratory frame. An example
of this is the case of a Sagnac interferometer at rest on the surface of the Earth. The
‘laboratory’ frame is then the ECI frame and the velocity ~V results from the rotation
of the Earth. The latter is sufficiently small that, to a good approximation, the change
in the direction of ~V may be neglected during the flight time of the light signal in the
interferometer. As shown in Fig. 5 and Fig. 6a the velocity vector ~V is inclined at an
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angle α to a normal to the plane of the interferometer (the x-axis) and lies in the xz plane;
ŝ± are unit vectors in the plane of the interferometer perpendicular to the radius vectors
~r± specifying the instantaneous positions of the light signals LS± (see Fig. 5). With the
above choice of coordinate axes:

~V = V (̂ı cos α + k̂ sin α), (3.1)

~r± = R(̂ sin φ± + k̂ cos φ±), (3.2)

ŝ± = ̂ cos φ± − k̂ sin φ±. (3.3)

At epoch t = 0 when the light signals leave the beam splitter the radius vector specifying
the position of the latter is at an angle φV to the z-axis. The angles φ+(φ−) give the
positions of the clockwise(counterclockwise)-rotating signals relative to the z-axis while
the angles φ+ (φ−) give the signal positions relative to the radius vector of BS. All geo-
metrical quantites are defined in the laboratory frame. In Fig. 6c (6b) are shown spatial

configurations, in the plane spanned by ~V and ŝ+ (ŝ−), of clockwise(counterclockwise)-
rotating light signals, separated by small time intervals δt+ (δt−). The angles χ±, ξ± in
Figs. 6b,c are defined acording to the relations:

V cos χ± ≡ −ŝ± · ~V = V sin α sin φ±, (3.4)

sin ξ± ≡ V δt± sin χ±

cδt±
= βV sin χ±. (3.5)

The circles at P±, Q± in Figs. 6b,c show successive positions of light signals whereas the
squares at P±, P’± show successive positions of a fixed point on the interferometer. It
follows from the geometry of Figs. 6b,c that the relative velocities in the laboratory frame
of the light signals and adjacent points of the interferometer are given by the relations:

c± =
P′
±Q±

δt±
=

Rδφ±

δt±
= c cos ξ± ∓ V cos χ± ∓ ΩR. (3.6)

The geometry of Fig. 5 gives:
φ± = φV ∓ φ± − Φ. (3.7)

Since φ±/Φ = c±/ΩR, combining (3.4), (3.5) and (3.6) gives:

Φ =
φ±ΩR

c±
=

φ±ΩR

c[
√

1 − β2
V + β2

V sin2 α sin2 φ± ∓ βV sin α sin φ± ∓ βΩ]
(3.8)

=
φ±βΩ

1 ∓ βV sin α sin φ± ∓ βΩ

+ O(β3) (3.9)

so that

φ+ + Φ = φ+

[

1 +
βΩ

1 − βV sin α sin φ+ − βΩ

]

≡ φ+(1 + y+) + O(β3), (3.10)

φ− − Φ = φ−

[

1 − βΩ

1 + βV sin α sin φ− + βΩ

]

≡ φ−(1 + y−) + O(β3). (3.11)

Combining (3.7) with (3.10) and (3.11) gives:

φ± = φV ∓ φ±(1 + y±). (3.12)
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Expanding the denominators in the expressions for y± in (3.10) and (3.11) as a series in
powers of βΩ and βV :

y± = ±βΩ ∓ βΩβV sin α sin(φ± ∓ φV ) + β2
Ω + O(β3). (3.13)

Using Eqs. (3.12) and (3.13) the angles φ±, referred to fixed axes in the laboratory frame,
can be written, to O(β2) accuracy, in terms of the angles φ± referred to a fixed direc-
tion (that of the beam splitter) in the interferometer frame. This is convenient for the
evaluation of the integrals to obtain the times-of-passage of the light signals in the inter-
ferometer.

Figure 5: Geometrical definitions for a circular Sagac interferometer undergoing clockwise
rotation and uniform translational motion in the laboratory frame. LS+ (LS−) are clock-
wise (counter-clockwise) rotating light signals, BS is the clockwise rotating beam splitter.

The projection of the velocity vector ~V into the plane of the interferometer is parallel to
the z-axis. The x axis is perpendicular to the plane of the interferometer. When the light
signals leave the beam splitter the angular separation of the latter with the z-axis is φV .

15



Figure 6: a) Definition of the angle α. The velocity ~V lies in the xz plane.. The x-axis
is perpendicular to the plane of the interferometer (c.f. Fig. 5.). b) Laboratory frame

geometrical definitions in the plane of ~V and ŝ− (tangent vector to the circular light path)
for a counter-clockwise light signal. c) as b) but for a clockwise light signal. In b) and c),
the positions of the light signal (P,Q) and a fixed point on the light path (P,P’) separated
by time intervals δt− and δt+ are shown. The light signals have speed c in the laboratory
frame. See text for discussion,
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Combining Eqs. (3.4)-(3.6) gives the following relation between infinitesimal time in-
tervals dt± and angular intervals dφ±:

dt± =
Rdφ±

c[
√

1 − β2
V + β2

V sin2 α sin2 φ± ∓ βV sin α sin φ± ∓ βΩ]
. (3.14)

Expressing the angular variables φ± in terms of φ± with the aid of Eqs. (3.12) and (3.13)
and expanding the right side of (3.14) as a power series in βV and βΩ enables the equation
to be integrated to obtain the following expressions for the times-of-passage T ′

± of the
light signals from and back to the beam splitter. Details of this calculation are given in
Appendix A.

T+ =
∫

dt+ =
2πR

c

{

1 + βΩ

[

1 + βV sin φV sin α +
β2

V

2
[2 + (2 − cos 2φV ) sin2 α]

]

+ β2
Ω [1 + βV (2 sin φV − π cos φV ) sin α] + β3

Ω +
β2

V

2
+

β2
V sin2 α

4

}

+ O(β4), (3.15)

T− =
∫

dt− =
2πR

c

{

1 − βΩ

[

1 − βV sin φV sin α +
β2

V

2
[2 + (2 − cos 2φV ) sin2 α]

]

+ β2
Ω [1 − βV (2 sin φV + π cos φV ) sin α] − β3

Ω +
β2

V

2
+

β2
V sin2 α

4

}

+ O(β4). (3.16)

Since the interference between the recombined light signals that constitutes the Sagnac
effect is measured in the interferometer rest frame the times of passage of the light signals
must also be evaluated in this frame. To do this, the time dilation effect due to the
motion, in the laboratory frame, of the beam splitter must be taken into account. The
finite time intervals ∆t′± corresponding to the laboratory frame intervals ∆t± are given
by the relations:

∆t′± =
∆t±
γBS
±

. (3.17)

Here γBS
± denotes an appropriate time-averaged time dilation factor due to the motion of

BS in the laboratory system. Denoting by φBS the average value of the polar angle φBS

(see Fig. 5) giving the angular position of BS in the laboratory frame then

γBS
± ≃ γBS ≡ 1

√

1 − β2
U

; βU ≡ U

c

where
Ux = V cos α, Uy = −ΩR cos φBS, U z = ΩR sin φBS + V sin α (3.18)

so that
β2

U
= β2

V + β2
Ω + 2βV βΩ sin α sin φBS. (3.19)

Since φBS = φV − Φ it follows from (3.7), (3.12) and (3.13) that

φBS = φV − φ+y+ = φV − πβΩ + O(β2). (3.20)
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Since, in the case considered here, ΩR ≪ c, the value of φ+ corresponding to the return
of the light signal to BS is φ+ ≃ 2π, so that φ+ ≃ π. Then (3.17), (3.19) and (3.20) give:

T ′
± =

T±

γBS
±

= T±

(

1 − β2
V

2
− β2

Ω

2
− βV βΩ sin α sin φV

+πβ2
ΩβV sin α cos φV

)

+ O(β4). (3.21)

Combining (3.15) and (3.16) with (3.21) gives:

T ′
± =

2πR

c

{

1 ± βΩ[1 ∓ βV cos φV sin α +
β2

V

2
sin2 α(2 − cos 2φV )]

−πβ2
ΩβV sin α sin φV − β2

V

2
± β3

Ω

2
+

β2
V sin2 α

4

}

. (3.22)

The Sagnac phase shift of Eq. (2.9) therefore generalises for βV 6= 0 to

∆φCG(βV ) = 2πν(T ′
+ − T ′

−) =
8πΩA

λ0c

[

1 +
β2

V

2
sin2 α[2 − cos 2φV ]

+βΩβV sin φV sin α +
β2

Ω

2

]

+ O(β5). (3.23)

The case in which a homogeneous transparent medium of refractive index n (n 6= 1)
is traversed by the light signals in the interferometer will now be considered. That is,
the generalisation of Eq. (2.12) when a circular interferometer undergoes both uniform
rotation and uniform translational motion in the laboratory frame. An example of this
is the fibre optic gyroscope (FOG) rotating at a fixed point on the surface of the Earth,
where the local translational motion is due to the rotation of the Earth.

It can be seen from the geometry of Fig. (6) that, on taking into account the Fresnel
light-dragging effect, the vacuum velocity of light, c, in Eq. (3.6) is replaced by the n-
dependent light signal velocities in the laboratory frame:

c(n)± =
c

n
± (V cos ξ± cos χ± ± V sin ξ± sin χ± + ΩR cos ξ±)

[

1 − 1

n2

]

(3.24)

which gives, for the velocities of the light signals, relative to the interferometer, in the
laboratory frame:

c(n)rel
± =

c

n
cos ξ± ± (V cos2 ξ± cos χ± ± V cos ξ± sin ξ± sin χ± + ΩR cos2 ξ±)

[

1 − 1

n2

]

∓V cos χ± ∓ ΩR. (3.25)

Making use of Eqs. (3.4) and (3.5) and neglecting terms of O(β4) and O(β3
V ) Eqs. (3.25)

may be written as:

c(n)rel
± =

c

n

{

1 +
x± ∓ βΩ

n
+ x2

±

[

1

2
−
(

n − 1

n

)

(1 ∓ βΩ)
]

+β2
V

[

n − 1

n
− 1

2
∓ βΩ

(

n − 1

2n

)]}

(3.26)
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where x± ≡ ∓βV sin α sin φ±. Allowing for the time dilation effect given by Eq. (3.17),
infinitesimal time intervals dt′± in the local comoving frame of the interferometer are
related to angular intervals dφ± of the light signal trajectories by the equation:

dt′± =
nR

c(1 + X±(n))

{

1 − β2
V

2
− β2

Ω

2
− βV βΩ sin α sin φV

+πβ2
ΩβV sin α cos φV

}

dφ± + O(β4) (3.27)

where

X±(n) ≡ x± ∓ βΩ

n
+ x2

±

[

1

2
−
(

n − 1

n

)

(1 ∓ βΩ)
]

+ β2
V

[

n − 1

n
− 1

2
∓ βΩ

(

n − 1

2n

)]

.

Developing the right side of (3.27) as a power series in βΩ and βV , retaining only up to
O(β3) terms gives:

dt′± =
R

c

{

n ± βΩ + β2
Ω

(

1

n
− n

2

)

± β3
Ω

(

1

n2
− 1

2

)

− β2
V

[

n2 − n

2
− 1 + βΩ

(

2
(

n − 1

n

)

− n2

)]

−x±

[

1 ± βΩ

(

2

n
− n

)

+ 3β2
Ω

(

1

n2
− 1

2

)]

+x2
±

[

1

n
− n

2
+ n2 − 1 ∓ βΩ

{

n − n2 + 1 − 3

n2

}]}

dφ± + O(β4). (3.28)

Changing variables from φ± to φ± and integrating over φ±, making use of Eqs. (A.12)
and (A.13) from Appedix A, gives, for the times-of-passage of the light signals:

T ′
± =

2πR

c

{

n ± βΩ + β2
Ω

(

1

n
− n

2

)

± β3
Ω

(

1

n2
− 1

2

)

+ (1 − n)βΩβV sin α sin φV

+β2
V

[

1 − n2 +
sin2 α

2

(

1

n
− n

2
+ n2 − 1

)

]

±βΩβ2
V

[

n2 − 1

2
− 2

(

n − 1

n

)

− sin2 α

2

{

1 − n2 + n − 3

n2
+
(

1

n
− n

2
+ n2 − 1

2

)

cos 2φV

}

]

+β2
ΩβV sin α

[

(n − 1)π cos φV ±
(

2

n
− 1

)

sin φV

]}

(3.29)

so that Eq. (2.12) generalises, for V 6= 0, to:

∆φCG(βV , n) = 2πν(T ′
+ − T ′

−) =
8πAΩ

cλ0

{

1 + β2
Ω

(

1

n2
− 1

2

)

+ β2
V

[

n2 − 1

2
− 2

(

n − 1

n

)

−sin2 α

2

{

1 − n2 + n − 3

n2
+
(

1

n
− n

2
+ n2 − 1

2

)

cos 2φV

}

]

+βΩβV

(

2

n
− 1

)

sin α sin φV

}

. (3.30)

It is seen by comparing Eqs. (2.12),(3.23) and (3.30) that, for all values of the refractive
index, the effect of translational motion of the interferometer is only to give correction
terms proportional to βΩβV and β2

V . These quadratic correction terms however, unlike
the lowest order result, do depend on the value of the refractive index. The Sagnac phase
shift ∆φ vanishes for purely translational motion. However, for non-vanishing values of Ω
sufficiently precise measurements of ∆φ with different orientations of the interferometer
can, in principle, determine the vector ~V , as well as test the correctness of Fresnel drag
coefficient ansatz.
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4 The translational Sagnac effect: the fibre optic

conveyor

The experimental demonstration [16, 17] that the Sagnac effect occurs also for purely
translational motion (i.e. that rotation is not required for its existence) was done by
modification of a fibre optic gyroscope (FOG) employing a single-mode fiber in order to
construct a ‘fibre optic conveyor’ (FOC) [16, 17]. A schematic of a single turn circular
FOG is shown in Fig. 7a. The theory of this device, to order β3, has been developed in
the previous section. The beam-splitter, BS, is a four-way fibre-optic light coupler [42].
The light source and detector co-rotate with the optical fibre loop. An FOC (Fig. 7b) is
constructed by introducing straight sections of optical fibre. The fibre loop passes over
freely rotating wheels W1 and W2. The light source, beam splitter and detector undergo
translational motion with speed v in the FOC frame. The latter is at rest relative to any
fixed, non moving, part of the FOC, e.g. the point mid-way between the centres of W1
and W2. The light path has circular portions where the fibre co-rotates with the wheels,
intercaled with the straight sections. In the present section the theory of this device is
developed, at order β3 accuracy, on the assumption that the speed of light is constant in
the laboratory frame, taking into account the Fresnel-Fizeau light dragging effect on the
propagation speed of light in the optical fibre, as well as allowing for uniform motion of
the FOC frame with speed ~V in the laboratory frame.

The speeds of the light signals in the straight sections are shown in the laboratory
frame in Fig. 7c, and relative to the FOC frame in Fig. 1d:

clab(n)U =
c

n

{

1 + [(1 − β2
T )(β + βL) + β2

T ]
(

n − 1

n

)

− β2
T

2

}

+ O(β4), (4.1)

clab(n)D =
c

n

{

1 + [(1 − β2
T )(β − βL) + β2

T ]
(

n − 1

n

)

− β2
T

2

}

+ O(β4), (4.2)

crel(n)U = clab(n)U − VL, (4.3)

crel(n)D = clab(n)D + VL (4.4)

where the labels U and D indicate the upper and lower straight light paths. The same
geometrical definitions are used (see Fig. 5) as in the previous section. The component
of the velocity of the FOC in the laboratory frame, parallel to the straight light paths in
the FOC is: VL = V sin α cos θ. Other definitions used in (4.1) and (4.2) are: β ≡ v/c,
βV ≡ V/c, βL ≡ VL/c and β2

T ≡ β2
V − β2

L. The expressions (4.1)-(4.4) are obtained from
Eqs. (3.24), (3.4) and (3.5) on noting that, from Figs. 5 and 7d, clab(n)U corresponds to
φ+ = −(3π/2 + θ) and clab(n)D to φ+ = −(π/2 + θ).

The calculation of the times-of-passage of the light signals from and back to the beam
splitter is done in three stages:

(i) A global space-time analysis taking into account the light signal velocities relative to
the FOC in (4.3) and (4.4), as well as the translational motion of the beam splitter.

(ii) Calculation of the times of passage of the light signals in the semi-circular light
paths.
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Figure 7: a) One-turn fibre optic gyroscope (FOG). b) One-turn fibre optic conveyor
(FOC). The interferometer (Light Source, Coupler and Detector) moves at speed v relative
to the centres of the wheels W1 and W2, which rotate due to the motion of the optical
fibre. c) Definitions of velocities of light signals and straight optical fibre segments in the
laboratory frame. d) Relative velocities in the laboratory frame.
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Figure 8: Laboratory frame configurations and epochs for the passage of a clockwise light
signal (indicated by the cross) for the FOC shown in Fig. 7b.
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(iii) Calculation of the times of passage of the light signals in the straight light paths

The global analysis of (i) for a single-turn FOC is shown on Fig. 8 where it is assumed that
BS is initially at the mid-point of the lower straight light path of length L. . The time
intervals in the ECI frame t1 − t5 for clockwise-rotating signals to arrive at the positions
shown are:

t1 =
L

2crel(n)D

, (4.5)

t2 = t1 + T̃+(L), (4.6)

t3 = t2 +
L

crel(n)U

, (4.7)

t4 = t3 + T̃+(R), (4.8)

t5 ≡ T+ =
L/2 + crel(n)Dt4

crel(n)D − v
(4.9)

where T̃+(L) and T̃+(R) are the times-of-passage of the light signals in the left and right
semi-circular paths of radius R. Combining (4.5)-(4.9) gives:

T+ ≡ T rot
+ + T trans

+

=
T̃+crel(n)D

crel(n)D − v
+

L(crel(n)U + crel(n)D)

crel(n)U(crel(n)D − v)
(4.10)

where T̃+ ≡ T̃+(L) + T̃+(R). The time intervals T̃+(L) and T̃+(R), required for stage (ii)
of the calculation are obtained by adapting the calculation of the previous section where
integrals over the angle φ+ —the relative angular separation of the light signal and the
beam splitter— were considered. Because of the motion of the optical fibre and the FOC
geometry of Fig. 7d, the time-of-passage of the light signal over the left semi-circular path
is given by integrating Eq. (3.28) over the interval zero to π − δ+ of φ+:

δ+ =
v

R

∫ π−δ+

0
F (φ+)dφ+ ≡ v

R
T̃+(L).

Noting from Figs. 7d and 5 that for the signal LSD, φV = −(π/2 + θ), it is found (for
details of the calculation, see Appendix A) that, neglecting terms of order β4 and higher:

T̃+(L) =
R

c

[{

n + β +
β2

n
+

β3

n2
− β2

V

[

n2 − 1

n
− 1 + β

[

2
(

n − 1

n

)

− n2

]

−sin2 α

2

[

1

n
− n

2
+ n2 − 1 − β

(

n − n2 + 1 − 3

n2

)]

]}

(π − δ+)

−βV sin α

{(

1 +
2β

n

)

[δ+ cos θ − 2 sin θ] +

(

δ2
+

2
− 6β2

n2

)

sin θ

+
β2

2
[(π2 − 4) sin θ + 2π cos θ] −

[

β + β2

(

1 +
2

n

)]

(π cos θ − 2 sin θ)

−πβδ+ sin θ − ββV sin α

2

[

π

2
cos 2θ + π sin 2θ

]

}

− β2
V sin2 α

2

(

1

n
− n

2
+ n2 − 1

)

[(βπ + δ+) cos 2θ + 2βπ sin 2θ]

]

(4.11)
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and that

δ+ = πβ
{

n + β(1 − n2) + β2

(

1

n
− 2n + n3

)

−β2
V

[

n2 − n

2
− 1 − sin2 α

2

(

1

n
− n

2
+ n2 − 1

)

]}

+ 2ββV sin α sin θ

+β2βV sin α
[(

4

n
− 2

)

sin θ + π(1 − n) cos θ
]

+ O(β4). (4.12)

Using (4.12) to eliminate δ+ from (4.11) it is found that

T̃+(L) =
πR

c

{

n + β(1 − n2) + β2

[

1

n
− 2n + n3)

]

+ β3

(

1

n3
− 2 + 3n2 − n4

)

−ββ2
V

{

n2 − n

2
− 1 + β

(

n − 2

n
− 3n2

2
+ n3

)

−sin2 α

2

[

1

n
− n

2
+ n2 − 1 − β

(

2 − 3n2

2
+ n3 − 3

n2

)]}

+
ββV sin α cos θ

π

[

2(1 − n) − β(1 + n − 2n2)
]

−2ββV sin α sin θ

π

{

1 − 2

n
+ β

[

3
(

1 − 1

n2

)

+
2

n
− n − π2

4
(1 − n2)

]}

−ββ2
V sin2 α

2

[(

1

n
− 3n

2
+

n2

2
+ n3 − 1

2

)

cos 2θ +
(

2

n
− 3 − n = 2n2

)

sin 2θ

]}

+ O(β4). (4.13)

The time interval T̃+(R) corresponding to the passage of the light signal LSU in Fig. 7d
is also given by integrating Eq. (3.28) over the interval zero to π − δ+ of φ+. In this case
φV = π/2 − θ.

Hence, for the passage of LSD:

φV = −(π/2+θ), sin φV = − cos θ, cos φV = − sin θ, sin 2φV = sin 2θ, cos 2φV = − cos 2θ.

while for the passage of LSU :

φV = π/2 − θ, sin φV = cos θ, cos φV = sin θ, sin 2φV = sin 2θ, cos 2φV = − cos 2θ.

It follows that T̃+(R) is given by (4.12) with the replacements: sin θ → − sin θ, cos θ →
− cos θ, so that the sum T̃+ = T̃+(L)+T̃+(R) is given by cancelling all the terms containing
sin θ or cos θ and multiplying all terms containing sin 2θ, cos2 θ or cos 2θ, as well as θ-
independent terms, by two, i.e.:
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T̃+ =
2πR

c

{

n + β(1 − n2) + β2

[

1

n
− 2n + n3)

]

+ β3

(

1

n3
− 2 + 3n2 − n4

)

−β2
V

{

n2 − n

2
− 1 + β

(

2 − 2

n
− 3n2

2
+ n3

)

− sin2 α

2

[

1

n
− n

2
+ n2 − 1 − β

(

2 − 3n2

2
+ n3 − 3

n2

)]}

− ββ2
V

2

[(

1

n
− 3n

2
+

n2

2
+ n2 − 1

2

)

cos 2θ +
(

2

n
− 3 − n + 2n2

)

sin 2θ

]}

+ O(β4). (4.14)

Substituting this expression for T̃+ in that for T rot
+ in Eq. (4.10) and retaining only up to

order β3 terms gives:

T rot
+ =

2πR

c

[

n + β + β2

(

1

n
− n + n2

)

+ β3

(

1

n3
− 1 + n2 + 3n3 − 3n4

)

−ββV sin α cos θ[n + β(3 − n2)] − β2
V

{

n2 − n

2
− 1 + β

(

n

2
− 2

n
− 5n2

2
+

3n3

2
+ 1

)

−sin2 α

2

[

1

n
− n

2
+ n2 − 1 − β

{

3 − 5n2

2
+

n3

2
− 3

n2
− n

2
+ 1

+

(

1

n
− 2n +

3n2

2
+

n3

2
− 3

2

)

cos 2θ +
(

2

n
− 3 − n + 2n2

)

sin 2θ

}]}]

+ O(β4). (4.15)

For the contribution of the straight light paths combining (4.1)-(4.4) with (4.10) gives:

T trans
+ =

(2nL/c)(1 + αT + β1)

((1 + αT + β−)(1 + αT + β+)
+ O(β4) (4.16)

where
β1 ≡ β(n − 1/n)(1 − β2

T ), β− ≡ (β − βL)[(n − 1/n)(1 − β2
T ) − n],

β+ ≡ (β + βL)(n − 1/n)(1 − β2
T ) − nβL, αT ≡ β2

T (n − 1/n − 1/2).

As shown in Fig. 9, an FOC configuration with counter-clockwise rotating light signals
is the image in a plane mirror of the configuration obtained by making the replacemennts
v → −v, VL → −VL in a configuration with clockwise rotating light signals. The time
intervals T trans

− and T rot
− for counter-clockwise rotating signals are therefore obtained by

making the replacements β → −β and βL → −βL in (4.16) and the replacements β → −β
and cos θ → − cos θ, sin 2θ → − sin 2θ in Eq. (4.15) This gives:

T trans
− =

(2nL/c)(1 + αT − β1)

((1 + αT − β−)(1 + αT − β+)
+ O(β4) (4.17)

and
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Figure 9: The physically equivalent image in the plane mirror MM’ with counter-clockwise
light signals is obtained from the configuration with clockwise light signals, by the oper-
ations v → −v, VL → −VL. Hence the time of passage of the counter-clockwise light
signals is obtained from the formula (4.15) for the clockwise light signals on making these
replacements.

26



T rot
− =

2πR

c

{

n − β + β2

(

1

n
− n + n2

)

− β3

(

1

n3
− 1 + n2 + 3n3 − 3n4

)

−ββV sin α cos θ[n − β(3 − n2)] − β2
V

{

n2 − n

2
− 1 − β

(

n

2
− 2

n
− 5n2

2
+

3n3

2
+ 1

)

−sin2 α

2

[

1

n
− n

2
+ n2 − 1 + β

{

3 − 5n2

2
+

n3

2
− 3

n2
− n

2
+ 1

+

(

1

n
− 2n +

3n2

2
+

n3

2
− 3

2

)

cos 2θ −
(

2

n
− 3 − n + 2n2

)

sin 2θ

}]}]

+ O(β4). (4.18)

Subtracting Eq. (4.17) from (4.16) (for details of the calculation see Appendix A)
gives:

∆T trans ≡ T trans
+ − T trans

−

=
4Lβ

c

{

1 +
β2

n2
+ ββV sin α cos θ(n2 − 3)

+β2
V

[

n2 − 2n +
2

n
− sin2 α cos2 θ

(

3

n2
− 2

n
− 1 + 2n − n2

)]}

+ O(β5) (4.19)

while subtracting Eq. (4.18) from (4.15) gives:

∆T rot ≡ T rot
+ − T rot

−

=
4πRβ

c

{

1 + β2

(

1

n3
− 1 + n2 + 3n3 − 3n4

)

−β2
V

[

n

2
− 2

n
− 5n2

2
+

3n3

2
+ 1 +

sin2 α

2

{

3 − 5n2

2
+

n3

2
− 3

n2
− n

2
+ 1

+

(

1

n
− 2n +

3n2

2
+

n3

2
− 3

2

)

cos 2θ

}]

− (3 − n2)ββV sin α cos θ

}

+ O(β5). (4.20)

All time intervals considered in the present section up to this point are those recorded
by a clock at rest in the laboratory inertial frame. A fixed point on the non-moving part
of the FOC moves with speed ~V in the laboratory frame, where, (see Figs. 5 and 7c):

~V = V (̂ı cos α + k̂ sin α). (4.21)

The interferometer (I) that measures the phase shift between the counter-rotating beams
consisting of the light source, the coupler BS, and the photon detector moves with velocity
~v relative to a fixed point on the FOC where (see Fig. 7d):

~v = v(̂ sin θ − k̂ cos θ). (4.22)

Taking into account relativistic time dilation the appropriate time interval to calculate
the Sagnac interference phase is therefore:

∆T ′ =
∆T

γI

(4.23)

27



where γI ≡ 1/
√

1 − (~VI/c)2, ~VI = ~V + ~v. According to Eqs. (4.21) and (4.22) then:

∆T ′ = ∆T

(

1 − β2
V

2
− β2

2
+ ββL

)

+ O(β4). (4.24)

Combining (4.19), (4.20) and (4.24) the following Sagnac phase shift is obtained:

∆φFOC(n) = ∆φtrans
FOC (n) + ∆φrot

FOC(n), (4.25)

∆φtrans
FOC (n) =

8πLβ

λ0

{

1 + β2

(

1

n2
− 1

2

)

+ ββV sin α cos θ(n2 − 2)

+β2
V

[

n2 − 2n +
2

n
− 1

2
− sin2 α cos2 θ

(

3

n2
− 2

n
− 1 + 2n − n2

)]}

+ O(β5), (4.26)

∆φrot
FOC(n) =

8π2Rβ

λ0

{

1 + β2

(

1

n3
− 3

2
+ n2 + 3n3 − 3n4

)

−β2
V

[

n

2
− 2

n
− 5n2

2
+

3n3

2
+

3

2
+

sin2 α

2

{

3 − 5n2

2
+

n3

2
− 3

n2
− n

2
+ 1

+

(

1

n
− 2n +

3n2

2
+

n3

2
− 3

2

)

cos 2θ

}]

− (2 − n2)ββV sin α cos θ

}

+ O(β5). (4.27)

which simplify, when n = 1, to:

∆φFOC(n = 1) = ∆φtrans
FOC (n = 1) + ∆φrot

FOC(n = 1), (4.28)

∆φtrans
FOC (n = 1) =

8πLβ

λ0

[

1 +
1

2
{β2 + β2

V (1 − 2 sin2 α cos2 θ)}

+ββV sin α cos θ] + O(β5), (4.29)

∆φrot
FOC(n = 1) =

8π2Rβ

λ0

[

1 +
β2

2
+ β2

V

(

1 +
sin2 α

4
[3 + 2 cos2 θ]

)

− ββV sin α cos θ

]

+ O(β5). (4.30)

Neglecting the order β2 and β2
V corrections it is found at lowest order (LO) that:

∆φLO
FOC(n) =

4π

λ0c
(2L + 2πR)v =

4π

λ0c
sv =

4π

λ0c

∮

~v · d~s (4.31)

where s = 2L + 2πR is the total path length. This is an example of the general Sagnac

phase difference formula (1.2). The above calculation is for a FOC with a single turn of

optical fibre. For a device with N turns the total path length is Ns so that the phase

difference given by Eq. (4.21) is multiplied by a factor N . This may give a large increase in

the sensitivity of the device to the value of v, As in the case of the rotational interferometer

discussed in the previous section, uniform translational motion of the FOC contributes

only refractive-index-dependent quadratic terms proportional to βΩβV and β2
V . Also, as

for the rotating interferometer, if the value of v is known, sufficiently precise measurement

of the interference phase with different orientations enables measurement of the velocity
~V relative to the preferred frame and a test of the functional n-dependence of the Fresnel

drag coefficient.
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5 The Hafele-Keating experiment

The ‘airborne clocks’ experiment was proposed by Hafele [14] and performed by Hafele
and Keating [12, 13] in 1971. In the experiment, four caesium beam atomic clocks were
flown around the Earth in commercial airliners, once from west to east (W-E) and once
from east to west (E-W). After each round trip the clocks were compared with fixed
reference clocks at the U.S. Naval Observatory. Rate differences between the airborne
and fixed clocks exist both because of different motions of the clocks in the ECI frame, a
predominantly special relativistic (SR) effect —time dilation— and because of the general-
relativistic (GR) gravitational blue-shift due to the different higher gravitational poten-
tials experienced by the airborne clocks. Following Hafele [14] a general-relativistic anal-
ysis will first be presented here. For later comparison with the Sagnac effect, first order
corrections due to the Earth’s gravitational potential and second order velocity correc-
tions will also be calculated, as well as the lowest order prediction obtained by Hafele.
The contribution of clock motion to the rate change will also be calculated using only
special relativity and compared with the general relativistic prediction. As previously
discussed in Ref. [15] the SR analysis will be seen to shed light on the different physical
meanings of RPVAR and RRVTR velocity transformation formulas discussed in Section
2 as well as the Ehrenfest rotating disc paradox. The calculation is also performed using
the Sun-centered inertial (SCI) instead of the ECI frame to define ‘coordinate time’.

An increment dτ of the proper time of a clock in the gravitational field of the Earth
is related to the ‘coordinate time’ increment dt recorded by a clock at rest in the ECI
frame by the Schwarzschild metric equation [1, 2] obtained as the solution of the Einstein
field equations in the free space around a non-rotating 4 spherically symmetric body with
gravitational potential φ:

dτ =

[

1 +
2φ

c2
− 1

c2

(

v2
r

1 + 2φ

c2

+ v2
θ + v2

φ

)]
1

2

dt. (5.1)

The spherical polar (r,θ,φ) coordinate system has its origin at the center of the body
with polar axis parallel to the angular velocity vector of the body. It is assumed in this
equation that the conceptual clock recording coordinate time is at a distance from the
Earth sufficiently large that all effects due to the gravitational field of the latter may
be neglected, A simplified version of the Hafele-Keating experiment will be considered
where the ground based clock is at the Equator and the aircraft undergoes equatorial
circumnavigation at fixed altitude h. It is assumed that the Earth is exactly spherical
so that the gravitational potentials experienced by the Earth-fixed clock, φE, and the
aircraft, φA, are:

φE = −GME

RE

, φA = − GME

RE + h
≃ −GME

RE

(

1 − h

RE

)

(5.2)

where G is the gravitational constant and ME and RE are the mass and radius of the
Earth. To first order in the small quantity h/R, φE and φA are related as:

φA = φE

(

1 − h

RE

)

,
h

RE

≪ 1. (5.3)

4The Lense-Thirring [32] ‘frame dragging’ effect due to the Earth’s rotation is neglected.
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The ECI frame, the comoving inertial frame of the Earth-fixed clock, and the comoving
inertial frame of the airborne clock are denoted by S, S’ and S” respectively, so that the
proper times of the Earth-fixed and airborne clocks are τ ′ and τ ′′ respectively. For both
the Earth-fixed and airborne clocks vr = vθ = 0 in Eq. (5.1). The azimuthal velocity,
vφ, for the Earth-fixed clock is equal to vE = REΩE where ΩE is the angular velocity of
rotation of the Earth, whereas for the airborne clock:

vφ = vA(±) =
vE ± v′

A

1 ± vEv′

A

c2

(5.4)

where v′
A is the speed of the aircraft relative to the surface of the Earth5. The velocities

vA(+) ( vA(−)) correspond to the W-E (E-W) flights. Proper time intervals for the
airborne clock for the W-E (E-W) flights are denoted by dτ ′′

+ (dτ ′′
−), and for the Earth-

fixed clock by dτ ′. The Schwarzschild metric equations for the Earth-fixed and airborne
clocks are therefore:

dτ ′ =

[

1 +
2φE

c2
− β2

E

]
1

2

dt, (5.5)

dτ ′′
± =

[

1 +
2φA

c2
− βA(±)2

] 1

2

dt (5.6)

where βE ≡ vE/c and βA(±) ≡ vA(±)/c. Taking the ratio of (5.6) to (5.5) the coordinate
time element dt cancels so that the proper time intervals of the airborne and Earth-fixed
clocks are related by the equation:

dτ ′′
± =

[

[1 + 2φA

c2
− βA(±)2

1 + 2φE

c2
− β2

E

]

1

2

dτ ′

=

{

1 − φE

c2

(

h

RE

)

− β′
A

2
(β′

A ± 2βE)

+(β′
A)2

[

β2
E ± βEβ′

A

2
− (β′

A)2

8

]}

dτ ′ + O(φEβ2). (5.7)

Introducing the round-trip time intervals recorded by the airborne and Earth-fixed clocks:

T ′′
± =

∫

dτ ′′
±, T ′ =

∫

dτ ′ =
2πR

v′
A

(5.8)

(5.7) gives:

∆T ′
± ≡ T ′′

± − T ′ = T ′

{

−φE

c2

(

h

RE

)

− β′
A

2
(β′

A ± 2βE)

+(β′
A)2

[

β2
E ± βEβ′

A

2
− (β′

A)2

8

]}

. (5.9)

5Note that vφ occurs at second order in the Schwarzschild metric equation and determines the size of
the time dilation contribution in (5.5) and (5.6). The use of the RPVAR to calculate this kinematical
β2 term, instead of the RRVTR, which must be used to describe order β space-time geometric effects, is
further discussed below.
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Values of the parameters in Eq. (5.9) comparable to those of the actual HKE are given
by choosing h = 10 km, v′

A = 300 m/s. Then with ME = 5.972×1021 kg, RE = 6.38×106

m, ΩE = 7.27 × 10−5 rad/sec it is found that:

φE/c2 = −6.94 × 10−10,

h/RE = 1.57 × 10−3,

βE = 1.55 × 10−6,

β′
A = 1.00 × 10−6,

T ′ = 1.37 × 105sec.

The general relativistic (GR) contribution to ∆T ′
± due to the potential φE is then:

∆T ′
±(GR) = −T ′φE

c2

[

h

RE

]

= 145 ns

while the order β2 special relativistic (SR) time dilation contributions are:

∆T ′
+(SR) = T ′

[

−β′
A

2
(β′

A + 2βE)

]

= −274 ns,

∆T ′
−(SR) = T ′

[

−β′
A

2
(β′

A − 2βE)

]

= 140 ns.

For comparison, in the HKE where the predicted time differences were calculated by
integration of a generalised version of the differential equation (5.7) over the actual flight
paths of the airliners, it was found that [12]:

∆T ′
+(GR)HK = 144 ± 14 ns, ∆T ′

−(GR)HK = 179 ± 18 ns,

∆T ′
+(SR)HK = −184 ± 18 ns, ∆T ′

−(GR)HK = 96 ± 10 ns

and combining the GR and SR contributions:

∆T ′
+(GR)HK + ∆T ′

+(GR)HK = −40 ± 23 ns,

∆T ′
−(GR)HK + ∆T ′

−(GR)HK = 275 ± 21 ns

to be compared with the results of the experiment [13]:

∆T ′
+(meas)HK = −59 ± 10 ns,

∆T ′
−(meas)HK = 273 ± 7 ns.

If instead of comparing the airborne clocks to a ground based one, an idealised experiment
is considered in which two aircraft are used to perform simultaneous W-E and E-W round
trip flights with the same values of h and v′

A, then (5.9) gives:

∆T ′′ ≡ T ′′
+ − T ′′

− = −4πREvE

c2

[

1 − (β′
A)2

2

]

. (5.10)

The difference of the time intervals recorded by the airborne clocks is independent of v′
A at

lowest order in β but depends linearly on vE. Measurement of ∆T ′′ therefore determines
vE and so the rate of rotation of the Earth. Such an experiment would be analogous to
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the Michelson-Gale experiment [10] which used the Sagnac effect to measure the latter
quantity. As will be discussed below, the lowest order Sagnac formula for light propaga-
tion time differences is similiar to (5.10), which has lead to an unfortunate conflation in
the literature of Sagnac and Hafele-Keating-like experiments which are physically quite
distinct. The former measures a non-relativistic order β effect, the latter an order β2 rela-
tivistic one. Further discussion of the distinction between the Sagnac and Hafele-Keating
experiments is found in Section 7 below.

The formula (5.10) for ∆T ′′ can also be obtained using only special relativity. Time
dilation observed from the frame S gives the relations:

TSR = γ(βE)T ′ = γ(βA(±))(T ′′
±)SR (5.11)

where γ(β) = 1/
√

1 − β2 and TSR =
∫

dt. The time dilation factor γ(βA(±)) between the
frames S and S” is related to that γ(β′

A) between the frames S’ and S” by the Lorentz

transformation of the temporal component of the dimensionless four-vector (V0; ~V ) =
(γ(β′

A); γ(β′
A)β′

A, 0, 0):

γ(βA(±)) = γ(βE)[γ(β′
A) ± βEβ′

Aγ(β′
A)] = γ(βE)γ(β′

A)[1 ± βEβ′
A]. (5.12)

Combining (5.11) and (5.12):

(T ′′
±)SR =

γ(βE)

γ(βA(±))
T ′ =

T ′

γ(β′
A)[1 ± βEβ′

A]
(5.13)

so that

∆T ′′
SR ≡ (T ′′

+)SR − (T ′′
−)SR = − 2T ′βEβ′

A

γ(β′
A)[1 − (βEβ′

A)2]

= −4πREvE

c2

(

1 − (β′
A)2

2

)

+ O(β5) (5.14)

which agrees with (5.10).

Consideration of the space-time geometry of the HKE sheds further light on the phys-
ical meanings of the RPVAR and RRVTR velocity transformation formulas discussed
in Section 2 above. The conventional RPVAR (5.4) used above to calculate vA(±) is
algebraically equivalent6 to the four-vector transformation equation (5.12) used to calcu-
late the time dilation factor γ(βA(±)). This kinematical application of the RPVAR is a
physically correct one, equivalent to the transformation of the relativistic energy of any
ponderable object between two different kinematical configurations. However, as will now
be demonstrated, the RPVAR does not correctly describe the space time geometry of the
HKE as observed in these frames. Spatial geometry in the ECI frame S gives, on setting
for simplicity h = 0, for the path lengths s+ (s−) of the W-E (E-W) flights:

s+ = vET + 2πRE, (5.15)

s− = vET − 2πRE. (5.16)

Because the speed v′
A of the aircraft relative to the surface of the Earth is the same in

the W-E and E-W flights and the distance traveled relative to the surface of the Earth,

6That is, if either equation is postulated the other can be derived purely by algebraic manipulation.

32



2πRE, is the same, the time T’ of the flights, measured in the frame S’, is the same for
both. Denoting the observed speeds of the aircraft in the frame S by (vobs

A )±, space time
geometry in the frame S gives:

(vobs
A )± =

s±
T

(5.17)

while time dilation between the frames S and S’ gives:

T ′ =
2πRE

v′
A

=
T

γ(βE)
. (5.18)

Combining (5.15)-(5.18) then gives:

(vobs
A )± = vE ± v′

A

γ(βE)
(5.19)

which is the analogue of the inverse of the RRVTR (2.6) derived by considerations of the
space-time geometry of the Sagnac effect.

Replacing T in (5.15) by T+, T in (5.16) by T−, T in (5.17) by T± and (vobs
A )± in (5.19)

by vA(±), the first member of (5.18) leads, after algebraic manipulation, to:

T± =
T ′v′

A

±vA(±) ∓ vE

. (5.20)

Substituting (vobs
A )± from (5.19) for vA(±) in this equation gives:

T+ = T− = γ(βE)T ′ ≡ T (5.21)

consistent with (5.15), (5.16) and (5.18). Substituting, instead, vA(±) given by the
RPVAR (5.4) it is found that

T± = T ′γ(βE)2(1 ± βEβ′
A). (5.22)

These relations are inconsistent both with the spatial geometry of the paths in the frame S
as described by (5.15) and (5.16) which requires that T+ = T− as well as the time dilation
relations (5.21). Evidently the observed space time geometry of the HKE in the frames
S and S’ is not correctly described by the RPVAR (5.4). At an even more fundamental
level, the prediction of (5.22) of different values of T+ and T− for the same value of T ′ is
at variance with a general theorem of space-time geometry pointed out by Langevin [43]
and recalled by Mermin [44] —the frame invariance of a triple world line intersection.
Consider the experiment where the W-E and E-W flights are performed simultaneously
by two aircraft with the same value of v′

A. They will arrive back simultaneously at their
starting point —a point on the world-lines of both aircraft and of their point of departure7.
The aircraft will be seen, in any reference frame, to arrive simultaneously at this point. It
is impossible that a unique value of T ′ can correspond to different values of T , as predicted
by (5.22).

Consider now the distance ∆L′
+ = v′

A∆τ ′ of the Eastward flying aircraft from its
point of departure after a time interval in the frame S’, ∆τ ′, sufficiently short that that

7To avoid any collision the aircraft might take off and land from separate runways parallel to the
Equator but slightly shifted, by the same distance, to the north or south. On arrival the aircraft and
their point of departure will be seen to have the same longitude by an observer in any frame of reference.
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the curvature of the surface of the Earth may be neglected. The distance moved by the
aircraft in the frame S during the corresponding time interval ∆t is:

∆s+ = (vobs
A )+∆t = vE∆t + ∆L+ (5.23)

where ∆L+ is the separation of the aircraft from its point of departure in the frame S.
Combining (5.19) and (5.23) gives:

∆L+ = [(vobs
A )+ − vE]∆t =

v′
A∆t

γ(βE)
= v′

A∆τ ′ = ∆L′
+ (5.24)

where the time dilation relation ∆t = γ(βE)∆τ ′ has been used. This demonstrates the
invariance of the length interval between the aircraft and its point of departure at cor-
responding times in the frames S and S’. Consideration of similar infinitesimal intervals
dL′

+, dL+ for h = 0 gives:
∫

dL′
+ ≡ C ′ =

∫

dL+ ≡ C = 2πRE (5.25)

which resolves [15] the Ehrenfest paradox concerning the ratio of the circumference, C, to
the diameter, 2R, of a rotating disc. It is neither less than π, as asserted by Ehrenfest [45]
nor greater than π, as asserted by Einstein [46], and no consideration of non-Euclidean
geometry is required. The spurious nature of the ‘length contraction’ effect of standard
special relativity theory is discussed elsewhere [36, 37, 47, 48].

The analysis of the HKE will now be redone using coordinate time defined in the Sun-
centered inertial (SCI) frame instead of the ECI frame. The geometrical and kinematical
variables employed are shown in Fig. 10. Cartesian coordinates in the equatorial plane
of the Earth.are defined with y-axis pointing towards the Sun and x-axis in the direction
of motion of the centroid of the Earth around the Sun with velocity ~V . Effects of the
change of direction of ~V during the flights are neglected as well as the tilt of the axis of
rotation of the Earth relative to the normal to its orbital plane. Only special relativistic
effects are considered. The ground station containing the Earth-fixed clock is denoted by
E, the aircraft by A and the fixed point on the Earth immediately below the aircraft, at
any instant, by G. At the start of the W-E flight shown in Fig. 10. φE = φA = φV , where
φE and φA are azimuthal angles relative to the x-axis. At the end of the flight φA = 2π
where φA is the angle between the radius vectors from the centre of the Earth to E and
A.

In calculating the time dilation effects for the clocks in E and A relative to coordinate
time in the SCI frame, contributions to their motion from both the rotational and trans-
lational motion of the Earth must be taken into account. For E, since the velocity vectors
due to the translational and rotational motion of the Earth are not, in general, parallel,
the transformation of the time dilation factor γ between the ECI and SCI frames is given
by the four-vector transformation equation:

γE = γV γ(βΩ)(1 − βV βΩ sin φE) (5.26)

where γV ≡ 1/
√

1 − (V/c)2 . Similarly, if β±
A is the scaled speed of the aircraft in the ECI

frame, the time dilation factor in the SCI frame is:

γ±
A = γV γ(β±

A )(1 − βV β±
A sin φA

±) (5.27)
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Figure 10: Definitions of angles and velocities in the comoving frame of the centroid of
the Earth (ECI frame). E: ground station, A: aircraft, G: point on the Earth’s surface
immediately below aircraft which executes equatorial circumnavigation in the W-E direc-
tion. The orbital velocity of the Earth around the Sun is V . The initial azimuthal angle
of E, A and G is φV
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where the time dilation factor γ(β±
A ) between the ECI frame and the comoving frame of

the aircraft is given by Eq. (5.12) as:

γ(β±
A ) = γ(βΩ)γ(β′

A)(1 ± βΩβ′
A). (5.28)

The time dilation relations in the SCI frame are:

dt = γEdτ ′ = γ±
Adτ ′′

± (5.29)

which, together with Eqs. (5.26)-(5.28) give8:

dτ ′′
± =

γE

γ±
A

dτ ′ =
(1 − βV βΩ sin φE)dτ ′

γ(β′
A)[1 ± βΩβ′

A − βV (βΩ ± β′
A) sin φA

±]
. (5.30)

Developing the right side of this equation in powers of β (β = βV , βΩ, β′
A) up to order β4

gives:

dτ ′′
± =

{

1 ∓ βΩβ′
A − (β′

A)2

2
± βΩ(β′

A)3

2
+ β2

Ω(β′
A)2 − (β′

A)4

8

+βV

[

(βΩ ± β′
A)

(

1 − (β′
A)2

2
∓ 2βΩβ′

A

)

sin φA
±

−βΩ

(

1 − (β′
A)2

2
∓ βΩβ′

A

)

sin φE

]

−β2
V βΩ(βΩ ± β′

A) sin φA
± sin φE + β2

V (βΩ ± β′
A)2 sin2 φA

±

}

dτ ′. (5.31)

The relations obtained from the space-time geometry of Fig. (10):

φE − φV

φA

=
βΩt

β′
Aτ ′

=
γEβΩ

β′
A

≡ r, ± φA = φA
± − φE

are used to express φE and φA in terms of φA:

φE = rφA + φV , φA± = (r ± 1)φA + φV . (5.32)

Integrating the right side of (5.31) over the range9 0 < φA < 2π after the change of
variable: dτ ′ = RdφA/v′

A and use of Eqs. (5.32) as described in Appendix B, it is found
that

∆T ′
± ≡ T ′′

± − T ′ = T ′′
± =

2πR

c

{

(1 − β2
V )(

β′
A

2
± βΩ) + β′

A

(

β2
Ω ± βΩβ′

A

2
− (β′

A)2

8

)

+
β2

V β2
Ω

2β′
A

± βV β′
A

π(βΩ ± β′
A)

[

β2
V

2
− β2

Ω

2
∓ β′

AβΩ − βV β′
A

π
F1(r0)

]

F1(r0)

+
β2

V (βΩ ± β′
A)

4π

[

βΩ

2βΩ ± β′
A

− 1

2

]

F2(r0)

}

+ O(β5). (5.33)

8The algebraic manipulation to obtain (5.30) is shortened by making use of the relation (algebraically
equivalent to (5.28)) γ(β±

A
)β±

A
= γ(βΩ)γ(β′

A
)(βΩ ±β′

A
). This formula is actually the Lorentz transforma-

tion, between the Earth-fixed frame in which the velocity v′
A

is defined and the ECI frame, of the spatial
component of the dimensionless four-vector: (γ(β′

A
); γ(β′

A
)β′

A
, 0, 0).

9Note that φA is a positive quantity proportional to τ ′.
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where

F1(r0) ≡ sin πr0 sin(πr0 + φV ), F2(r0) ≡ sin 2πr0 sin 2(πr0 + φV ).

It follows from this equation that:

∆T ′′
± ≡ T ′′

+ − T ′′
− =

2πRβΩ

c

{

−2 + (β′
A)2 + 2β2

V

+
βV β′

A

π[β2
Ω − (β′

A)2]

[

β2
V − β2

Ω − 2β′
A

(

β′
A +

F1(r0)βV

π

)]

F1(r0)

+
β2

V βΩβ′
AF2(r0)

2π[4β2
Ω − (β′

A)2]

}

− Rβ2
V β′

AF2(r0)

c
+ O(β5). (5.34)

As in the case of the Sagnac effect formulas (3.23), (3.30) including translational motion

with unifrom velocity ~V in addition to uniform rotation gives only order β2 corrections to
the rotation-only prediction. At lowest order the same result is obtained using the ECI
or the SCI (or indeed, any other inertial frame) to define coordinate time.

The ‘Hafele-Keating Paradox’ of Nawrot [49] therefore does not exist. This author,
remarking that the speed of a clock on the surface of the Earth in the SCI frame due to
orbital motion: ≃ 30 km/s is much greater than the speed: ≃ 300 m/s due to the Earth’s
rotation, conjectured, without detailed calculation, that the time dilation effects in the
HKE should be dominated by orbital motion. Since no such effects were observed in the
HKE, it was concluded that [49]:

‘The result of the Hafele-Keating experiment proves that the Earth does not rotate
about the Sun.’

However the explicit calculation above shows that the orbital motion of the Earth
contributes only (V/c)2 corrections to the SR contribution, and does not appear at all in
the GR calculation where use of the Schwarzschild metric equation makes mandatory the
choice of the ECI frame for the definition of coordinate time.

6 Alternative derivations of the Sagnac effect

The physical basis of the Sagnac effect is the same as that of any other ‘two path’
quantum mechanical experiment, for example the Young double slit experiment. In a
Sagnac-type experiment performed either with photons or massive particles the difference
∆s between the lengths of the paths corresponding to the two interfering probabilty
amplitudes is generated by the motion of the beam splitter/combiner in photonic optics,
or by the beam combiner, in experiments using neutrons of electrons. The phase shift is
∆φ = 2π∆s/λ where λ = h/p is the de Broglie wave length associated with the photons or
‘matter waves’, with free-space momentum p, employed in the experiment. In the case of
photonic experiments the fundamental hypothesis used to calculate ∆s is the constancy of
the speed of light in the laboratory frame. For experiments performed on the surface of the
Earth, where the laboratory frame is the ECI one, then, as discussed in the introduction,
the (near) constancy of the speed of light is a prediction of general relativity in which
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the gravitational field of the Earth, described by the Schwarzschild metric, constitutes an
effective ‘local aether’ in the vicinity of the Earth.

The calculation of ∆s in the laboratory frame is a simple exercise in Galilean space-
time geometry taking into account the relative velocity of the photons or massive particles
and the beam splitter/combiner. Since the interference effect actually occurs in the rest
frame of the interferometer (which may either be in rotational or uniform translational
motion) the time interval for photons ∆t = ∆s/c must be replaced by ∆t′ = ∆t/γ where
γ is an appropriate time dilation factor, relating laboratory time t to the time t′ in the
comoving frame of the interferometer. This relativistic correction can be accomodated by
a suitable redefinition of the phenomenological de Broglie wave length λ = γλ0 where λ0

is the wavelength in the laboratory frame.

It is clear from the above that the lowest order (in β = v/c) Sagnac effect follows
simply from Galilean space-time geometry (the concept of the relative velocity of two
objects in a single frame of reference); special relativity contributes only the time dilation
factor γ corresponding, at lowest order, to a β2 correction. The calculation just sketched,
due originally to Post [6] as a relativistic generalisation of Langevin’s [29] Galilean one,
is that presented in Section 2 above, leading to Eq. (2.9) for ∆φ. Sagnac’s original
calculation [50] is also essentially the same as that of Section 2 above —based on Galilean
space-time geometry in the laboratory frame. The same calculation may be found in the
more recent literature [51, 52]. In spite of this it has been erroneously claimed by some
authors [54, 55, 56, 58, 59, 9, 52] that the Sagnac effect is a purely relativistic one.

In 1937 Langevin, in response to a communication by Dufour and Prunier [35] point-
ing out inconsistent predictions, according to special relativity, of the Sagnac effect for
observers in the laboratory frame or one co-rotating with the interferometer, gave a ‘rel-
ativistic’ derivation of the Sagnac effect [55] different to the one he gave in 1921 [29].
The methodology of the analysis of Ref. [55] had been given earlier [54]. In spite of its
claimed ‘relativistic’ nature the 1937 calculation was in fact based on a purely Galilean
transformation of the invariant interval relation, in cylindical coordinates with z constant,
in an inertial frame:

(ds)2 = c2(dt′)2 − (dr′)2 − (r′dθ′)2 (6.1)

into a uniformly rotating one via the Galilean transformation equations:

r′ = r, t′ = t, θ′ = θ + ωt

to give:
(ds)2 = (c2 − ω2r2)(dt)2 − 2ωr2dθdt − (dr)2 − (rdθ)2. (6.2)

By a change of variables the non-diagonal dθdt term is eliminated to write (6.2) in a
‘Minkowskian’ manner:

(ds)2 = c2(dτ)2 − (dσ)2 (6.3)

where

dτ ≡
√

1 − ω2r2/c2

(

dt − ωr2dθ

c2 − ω2r2

)

, (6.4)

(dσ)2 ≡ (dr)2 +
(rdθ)2

1 − ω2r2/c2
. (6.5)
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To first order in ωr/c (6.4) gives

dτ ≃ dt − ωr2dθ

c2
. (6.6)

At the same order, this equation is identical to the Lorentz transformation of time between
an inertial frame at rest relative to the axis of rotation of Langevin’s ‘rotating platform’
and the co-moving frame of a fixed point of the platform, where τ is the time recorded by
a clock at rest on the platform, t the time recorded by a clock at rest in the inertial frame,
and θ the angle defined in the latter frame —not, as according to Langevin’s definition,
the angle in the former frame! Langevin next integrates the second term in (6.6) over the
range 0 < θ < 2π for fixed r;

ωr2

c2

∫ 2π

0
dθ =

ω2πr2

c2
=

2ωA

c2
(6.7)

where A ≡ πr2. Integrating (6.6) and using (6.7) the following equations are written
without any explanatory comment:

τ1 = t1 −
2ωA

c2
, (6.8)

τ2 = t2 +
2ωA

c2
(6.9)

where t1 and t2 are identified with times-of-passage of co-rotating and counter-rotating
light signals in the inertial frame. Further indentifying τ1 and τ2 with the corresponding
times-of-passage in the rotating frame (called by Langevin intervals of ‘local’ time) and
assuming the constancy of the speed of light so that τ1 = τ2, (6.8) and (6.9) give:

t1 − t2 =
4ωA

c2
(6.10)

and a Sagnac phase shift in agreement with the experimentally confirmed value given
by Eq. (2.9) above. This mathematically flawed calculation is the prototype for the
widely-known treatment of the Sagnac effect in a textbook by Landau and Lifshitz [53],
to be discussed below, and many other similar ‘relativistic’ derivations to be found in the
literature. The calculation is flawed because (r,θ) are, by definition coordinates of a fixed
point on the rotating platform [54]:

Si r et θ sont les coordonnées polaire autour de ce centre d’un pointe quelconque lié à
la plate-form. . .

The coordinates r and θ are then constant so that dr = dr′ = 0 and dθ = 0, and (6.2)
is correctly written, in special relativity, where t 6= t′, as:

(ds)2 ≡ c2(dτ)2 = (c2 − ω2r2)(dt′)2 (6.11)

so that

dt′ =
1

√

1 −
(

ωr
c

)2
dτ (6.12)

which is the correct time-dilation equation between the inertial frame and the comoving
frame of a fixed point (r,θ) on the rotating interferometer —there is no spurious ‘relativity
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of simultaneity’ effect as in Eqs. (6.8) and (6.9). Although the calculation is wrong due
to the erroneous nature of the primary equation (6.2) other features of it should also give
pause, such as the lack of any consideration of the space-time geometry of light signal
propagation, the inconsistent treatment of order (ωr/c)2 terms (which are neglected in
the transformation t′ = t, but not in the first term on the right side of (6.2)), and finally
the ‘parachuted’, unexplained, Eqs.(6.8) and (6.9).

Another calculation of the Sagnac effect invoking the spurious ‘relativity of simul-
taneity’ effect manifested in the terms ±2ωA/c2 in Eqs. (6.8) and (6.9) above is due to
Ashby [56]. Considering an arbitary signal propagating with speed ux in an inertial frame
S between a source and an observer, separated by a distance dx, both moving parallel to
the signal with speed v, the propagation time dt of the signal is:

dt =
dx

ux − v
. (6.13)

Ashby considers only first order terms in v/c so that dx′ = dx and dt′ = dt where x′ and
t′ are space and time coordinates in the comoving frams S’ of the source and the observer.
From the definition of velocity the signal speed in the frame S’ is:

u′
x ≡ dx′

dt′
=

dx

dt
+ O([v/c]2)

= ux − v + O([v/c]2). (6.14)

Ashby however assumes that u′
x is related to ux not by (6.14) but by the relativistic

velocity addition formula:

ux =
u′

x + v

1 + u′
xv/c2

(6.15)

to derive the relation

ux − v =
u′

x[1 − (v/c)2]

1 + u′
xv/c2

=
u′

x

1 + u′
xv/c2

+ O([v/c]2) (6.16)

which, combined with (6.13) gives:

dt =
dx

u′
x

+
vdx

c2
+ O([v/c]2). (6.17)

Ashby then arbitrarily identifies the time difference dt in the Sagnac effect, due to rotation
of the interferometer with the ’relativity of simultaneity’ term vdx/c2 in (6.17), where
v = ΩR, which is independent of u′

x, instead of using the correct signal velocity u′
x given

by Eq. (6.14). Straightforward application of (6.15) for the case of light signals: ux = c
gives u′

x = c in contradiction with (6.14) and a vanishing Sagnac effect, as pointed out by
Dufour and Prunier [35]. A different, correct, derivation of the Sagnac effect by Ashby,
consistent with Eq. (6.14), is given below in the present section.

The basic hypothesis of the calculation in Refs. [57, 58, 59] is that the particle asso-
ciated with interfering amplitudes has the same speed v (not necessarily equal to c) in
both paths in the co-rotating frame of a circular interferometer as shown in Fig. 2. For
the case of photonic experiments on the surface of the Earth this hypothesis is both in
contradiction with the prediction of general relativity and obviously predicts ∆s = 0 and
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therefore no Sagnac effect. In any case, in Refs. [57, 58, 59] the time Lorentz transforma-
tion equation is applied to give (in the notation of the present paper):

T± = γΩ

(

T ′
± ± ΩRC ′

c2

)

(6.18)

where C ′ is the circumference of the path in the co-rotating frame of the interferometer.
It is further assumed that:

T ′
+ = T ′

− =
C ′

v
=

2πRγΩ

v
. (6.19)

Combining (6.18) and (6.19) gives:

∆T ≡ T+ − T− =
4πR2Ωγ2

Ω

c2
. (6.20)

The time dilation effect between the laboratory frame and the comoving frame of the
interferometer is then invoked to give:

∆T = γΩ∆T ′ ≡ γΩ(T ′
+ − T ′

−) (6.21)

to finally obtain:

∆φ = 2πν∆T ′ =
8π2R2νΩγΩ

c2
(6.22)

which agrees with Eq. (2.9) above. The authors of Refs. [57, 58, 59] correctly assume
that what is relevant in the calculation of the Sagnac effect is ∆T ′, i.e. the difference
in the times-of-passage of the signal in the two paths in the interferometer frame, but
according to (6.19) used to derive (6.20) from (6.18), ∆T ′ = 0! Then (6.21) gives ∆T = 0,
in contradiction with (6.20). A ‘length expansion’ effect in the interferometer frame is
assumed in the last member of (6.19). This is justified by the statement [57]:

‘It must be kept in mind that Euclidean geometry is not valid on the rotating disc,
the circumference of the circle as measured by measuring rods resting on the disc is’
( 2πRγΩ)‘on account of the Lorentz contraction.’

So the measuring rods are supposed to shrink, whereas elements of the disc in the
same comoving frame as corresponding elements of the rod do not! In the calculation, the
Sagnac effect arises entirely from the second term on the right side of Eq. (6.18) which
also is the source of a spurious ‘relativity of simultaneity’ effect. Indeed it is clear by
simple inspection of (6.18) that if ∆T ′ = 0 as assumed in (6.19) then ∆T 6= 0 as in
(6.20), which is a ‘relativity of simultaneity’ effect, whereas the (physically correct) time
dilation relation (6.21) gives ∆T = 0 when ∆T ′ = 0 —no ‘relativity of simultaneity’. The
erroneous conflation of the Sagnac effect with ‘relativity of simultaneity’ is common in
the literature [11, 19] Another feature of the calculation of Refs. [57, 58, 59] is that the
signal speed v does not appear in the final result (6.22), the ‘c2’ in the denominator of the
right side originating from the ‘relativity of simultaneity’ terms just discussed in (6.18).
In contrast the ‘c’ in the denominator of the correctly derived formula (2.9) is the signal
speed in the laboratory frame and would be replaced by v if this were the signal speed.

In fact the application of the time interval Lorentz transformation between the labora-
tory frame and the co-rotating frame of the interferometer to give Eq. (6.18) is erroneous.
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If t′ is the time recorded by a clock at a fixed position in the interferometer, say at the
position of the beam splitter, the correct transformation is: ∆t = γΩ(∆t′ ± ΩR∆x′/c2).
Since the clock is at a fixed position in the co-rotating frame, ∆x′ = 0, which gives the
correct time dilation relation ∆t = γΩ∆t′ used to obtain Eq. (6.21).

In summary the ‘relativistic’ derivation of (6.22) in Refs. [57, 58, 59] is based on an in-
correct postulate concerning the speed of signals in the interferometer frame, an incorrect
application of the temporal Lorentz transformation and contains logically incompatible
(self-contradictory) statements in Eqs. (6.19)-(6.21).

Malykin [9] assumes also a constant signal speed, v, in a the co-rotating frame of a
circular interferometer which is identified as a ‘phase velocity’ of the associated ‘waves’.
Again retaining the notation of the present paper, Malykin notes the following signal path
lengths s± in the laboratory frame, following from the geometry of Fig. 2:

s± = 2πR ± ΩRT±, T± =
s±
v±

(6.23)

where v± are the laboratory frame signal velocities assumed to be to be given by the
RPVAR as:

v± =
v ± ΩR

1 ± vΩR/c2
. (6.24)

Combining (6.23) and (6.24) gives

T± =
2πR[1 ± (vΩR/c2)]

v[1 − (ΩR/c)2]
(6.25)

from which follows

∆T = T+ − T− =
4πR2Ω

c2[1 − (ΩR/c)2]
(6.26)

which is the same as Eq. (6.20). Again the signal velocity v cancels from the result. In
this case the factor ‘c2’ in the denominator on the right side of (6.26) originates in the
relativistic term in the denominator of the right side of the RPVAR (6.24). Malykin then
assumes the time dilation relation (6.21) in order to recover from(6.26) the correct result
(6.22). Since the counter-rotating signals have equal speeds in the co-rotating frame of
the interferometer, then, as in (6.19) above, T ′

+ = T ′
− so that ∆T ′ = 0 and from the time

dilation relation, also assumed to hold by Malykin, ∆T = 0 in contradiction with (6.26).
The putative ‘relativistic’ calculation of Malykin [9] therefore contains the same internal
contradictions as that of Refs. [57, 58, 59].

The paper of Logunov and Chugreev [52], although demonstrating the contrary by
direct calculation, also claims a purely special relativistic nature for the Sagnac effect:

‘We therefore think that it is pertinent at this point on the basis of methodological
considerations and also to avoid any possible misconceeption, to emphasize one more time
that the Sagnac effect is of a purely special relativistic nature.’ (Italics in the original)

‘In the present paper we will show that an explanation of the Sagnac effect is com-
pletely within the capability of the special theory of relativity and that none of the
following need to be invoked: the general theory of relativity, velocities higher than the
speed of light, or any other postulates.’
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After a quotation from Sommerfeld [60] that asserts that the Sagnac effect is of order
v/c and classically calculable, and showing explicitly by calculation that this is indeed
the case, the authors of Ref. [52] reproduce the laboratory frame calculation of Section 2
above 10 to obtain Eq. (2.9) for the Sagnac phase difference, stating correctly, that in this
case it was not necessary to consider any light signals with velocity greater than c.

There follows and abstract mathematical discussion of the relation between a Pseudo-
Euclidean Minkowski space with a non-diagonal metric and a conventional diagonal-metric
Minkowski space. It is asserted that the metric of the latter space, which is related to
the former by transformation formulas that are given, is specified by a single parameter
‘c’ with the dimensions of velocity that is a universal physical constant. The connection
of this mathematical exercise, to the Sagnac effect, in the context of the other arguments
given, is not clear to the present author. Then there is a discussion of transformation
formulas between an inertial and a uniformly rotating frame similar to that to be found
in a text book by Landau and Lifschitz [61]. The flaws in this treatment of the metric
of a rotating frame are discussed below. Finally, the calculation in the laboratory frame
in Eqs. (4)-(8) of Ref. [52] is repeated, verbatim, from Eq. (14) to the end of the paper,
but it is claimed that the calculation is now being performed in the rotating frame! It is
clear that when the calculation is actually performed in the rotating frame i.e. in terms
of the proper time recorded by a clock comoving with the beam splitter/combiner, as in
Section 2 above or in Eqs. (4)-(12) of Post’s review article [6], that light signal relative
velocities both greater than and less than c must be taken into account, and that use
of the RPVAR to transform velocities between the laboratory and interferometer frames
leads to the prediction of a vanishing Sagnac effect, refuting the claim of Ref. [52] that the
existence of the Sagnac effect in completely consistent with conventional special relativity
and that no light velocities greater than c need to be considered.

Ref. [52] contains the statement, after the second calculation of the Sagnac effect
mentioned above:

‘ We also note that in the rotating frame of reference the coordinate velocity of light
is anisotropic dφ/dt = −ω ± c/R.’

Since time dilation gives t = γt′ where t′ is the proper time of a clock at rest in the
rotating frame, the equation just mentioned gives

dφ

dt′
≡ ω′ = γ(−ω ± c/R) (6.27)

which is equivalent to the relation (2.7) above as derived by Post [6]. In conclusion, the
results of two correct calculations to be found in Ref. [52], the first Galilean, the second
equivalent to (6.27), are in direct contradiction with the written conclusions of the paper,
as summarised in the above quotations. In fact the Sagnac effect is classical (Galilean)
at lowest order, and does imply the existence of signal velocities greater or less than c in
the rotating frame.

A number of authors [62, 63, 64] following the treatment in ‘The Classical Theory of
Fields’ by Landau and Lifshitz [61], which is similar to Langevin’s work of 1937, discussed

10i.e. one in which the time dilation effect, leading to γΩ 6= 1 in Eq. (2.9), is neglected.
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above, have given a general-relativistic interpretation of the Sagnac effect. This approach
assumes that the speed of light is equal to c in both the laboratory and rotating frames
(i.e. validity of the RPVAR) and claims that the spatial geometry in the rotating frame
is non-Euclidean and that no spatially-separated clocks in the rotating frame can be
synchronised. The following statement concerning the space-time geometry of rotating
frames can be found [53]:

‘In an inertial reference system, in cartesian coordinates, the interval ds is given by
the relation:

ds2 = c2dt2 − dx2 − dy2 − dz2.

Upon transforming to any other inertial reference system (i.e. under Lorentz transfor-
mation) the interval, as we know, retains the same form. However if we transform to
a non-inertial system of reference, ds2 will no longer be a sum of squares of the four
coordinate differentials.

So, for example, when we transform to a uniformly rotating system of coordinates,

x = x′ cos Ωt − y′ sin Ωt, y = x′ sin Ωt + y′ cos Ωt, z = z′

(Ω is the angular velocity of rotation, directed along the z axis), the interval takes on the
form

ds2 = [c2 − Ω2((x′)2 + (y′)2)]dt2 − (dx′)2 − (dy′)2 − (dz′)2 + 2Ωy′dx′dt − 2Ωx′dy′dt.

No matter what the law of transformation of time coordinates, this expression cannot be
represented as a sum of squares of the coordinate differentials.’

The contrary of the last assertion will now be demonstrated by applying the temporal
Lorentz transformation. Since this transformation depends only on the instantaneous
magnitude of the velocity, not on the acceleration, it applies equally to transformations
beween inertial frames or, as in the present case between an inertial and an accelerated
frame. It is convenient to use polar coordinates in both the inertial frame:(r,φ) and in
the rotating frame: (r′,φ′) and to set z = z′ = 0. The interval equation in the inertial
frame is then

ds2 = c2dt2 − r2dφ2. (6.28)

Consider a clock at the fixed position (R,φ′
0) in the rotating frame. Introduce local

Cartesian coordinate systems with origin at the clock, and x, x′ axes in the azimuthal
direction. Infinitesimal intervals dx, dt on the world line of the clock then transform into
the rotating frame as:

dx′ = Rdφ′ = 0 = γΩ(dx − ΩRdt) = γΩ(Rdφ − ΩRdt), (6.29)

dt′ = γΩ(dt − ΩRdx/c2) = γΩ(dt − ΩR2dφ/c2). (6.30)

Using the equation of motion of the clock in the inertial frame dφ = Ωdt to eliminate dφ
from (6.30) gives

dt = γΩdt′. (6.31)

Substituting dt = γΩdt′, dφ = ΩγΩdt′ in (6.28) gives:

ds2 = c2γ2
Ω[1 − (ΩR/c)2](dt′)2 = c2(dt′)2. (6.32)
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The same result is obtained by subsituting dx′ = dy′ = dz′ = 0, (x′)2 + (y′)2 = R2 and
dt = γΩdt′ in the formula for ds2 in the text from Ref. [53] quoted above. Contrary to the
above statement, ds2, evaluated in the rotating frame, is expressed as a sum (with only
one term) of ‘squares of the coordinate differentials’. Also, since no spatial coordinate
appears in the time dilation relation (6.31), there is no difficulty to synchronise clocks at
different positions in the rotating frame, providing they they all have the same value of
r′, a condition that is evidently satisfied for a Sagnac experiment with circular geometry.
However it is not possible to synchronise, at more than one instant, clocks at different r′

values, due to the dependence of γΩ on this quantity.

The main flaw in the discussion of rotating frames in Ref. [61] is the inconsistent use
of the Galilean transformation t′ = t. On application of the Lorentz transformations
the ‘β2’ term −Ω2R2 in g00 is exactly cancelled by a similar term arising from the time
transformation. The ‘non-Euclidean metric’ with g00 different from c2 is a consequence
of an inconsistent approximation where some (v/c)2 terms are neglected and others are
retained. Another similar example occurs in ‘non-relativistic’, or ‘Galilean’, treatments of
quantum-mechanical phases which appear to be frame dependent [57, 58, 59, 65, 66, 67].
Again (v/c)2 terms originating in the Lorentz transformation of time are neglected. Also,
when the transformation equations concern events at a fixed position in the rotating
frame, as is the case when questions of clock synchronisation are considered, the intervals
dx′, dy′ vanish so that there are no off-diagonal terms in the metric of the rotating frame.

In the subsequent calculation of the Sagnac effect in Ref. [53], time differences for
light signals, based on the non-Euclidean metric in the rotating frame, originate in similar
spurious ‘relativity of simultaneity’ terms as in the calculation of Malykin discussed above.
In spite of this it is finally correctly stated that, at lowest order in v/c the speed of the
light signals in the rotating frame are c ± ΩR 11, in agreement with Eq. (2.6) above, and
that this also follows from an alternative classical (i.e. non-relativistic) calculation. For
further discussion of the treatment of the Sagnac effect by Ref. [53] see Ref. [5].

The transformation between an inertial frame and a rotating ring can be considered to
be a series of instantaneous Lorentz transformations with the same velocity parameter but
different directions; there is need to invoke non-Euclidean geometry. This has previously
been pointed out in the literature by Anandan [51]:

‘Many authors have concluded...that’ (measuring rods) ‘determine a non-Euclidean
geometry with respect to the disc. However the “circumference” measured by these rods
is really the length of the helical curve in space-time consisting of events which are locally
simultaneous with respect to the instantaneous inertial frames attached to the periphery
of the disc... .Thus there is no violation of Euclidean geometry as a result of the rotation
if the gravitational field due to the disc is neglected’,

This conclusion is consistent with the resolution of the ‘Ehrenfest paradox’ presented
in Section 5 above and in Ref. [15]

Including the time dilation relation (6.31) the invariant interval equation for events

11The formula is (89.4) of Ref. [61]: c′ = c ± 2ΩS/L where S = πR2 and L = 2πR.
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on a circle of fixed radius R in a rotating frame is

ds2 = c2(dt′)2 − 2ΩR2γΩdt′dφ′ − R2(dφ′)2. (6.33)

As shown by Klauber [7] this relation provides an elegant way to derive the prediction
for the Sagnac phase shift and the related kinematical formulas obtained in Section 2
above. Making the hypothesis that a light signal following the circular path has speed c
in the laboratory frame gives the equation of motion Rdφ = cdt in this frame so that the
invariant interval between neighbouring events on the world line of the light signal is

ds2 = c2dt2 − R2dφ2 = 0. (6.34)

Setting ds2 = 0 in (6.33) and solving the resulting quadratic equation for cdt′ gives:

cdt′ = γΩ(1 + βΩ)Rdφ′. (6.35)

So that

R
dφ′

dt′
≡ c′+ =

c

γΩ(1 + βΩ)
= c

√

1 − βΩ

1 + βΩ

= cγΩ(1 − βΩ). (6.36)

In this way the RRVTR (2.6) and the prediction (2.9) for the Sagnac phase shift are
recovered, Setting γΩ = 1 in (6.31) and so retaining only order βΩ terms the above
calculation simplifies to that of Langevin in 1921 [29].

Ashby [64], also following Langevin [29] used this method to obtain the Sagnac effect
time difference in a single path due to rotation, by neglecting time dilation: t′ = t —
equivalent to setting γΩ = 1 in (6.31)— to obtain, instead of Eq. (6.35):

cdt′ = Rdφ′ +
ΩR2dφ′

c
+ O(β2

Ω) (6.37)

which gives

R
dφ′

dt′
≡ c′+ =

c

1 + βΩ

= c(1 − βΩ) + O(β2
Ω). (6.38)

The above calculation in the rotating frame also demonstrates the Euclidean spatial
geometry of this frame and the absence of any ‘length contraction’ effect or ‘Ehrenfest
paradox’ related to a putative non-Euclidean spatial geometry. Denoting by C (C ′) the
circumference of the light path in the laboratory (rotating) frame, space time geometry
in the laboratory frame gives for the path length

s+ = C + ΩRT+, T+ =
s+

c
(6.39)

so that

T+ =
C

c(1 − βΩ)
. (6.40)

Using (6.36), (6.39), (6.40) and the time dilation relation T+ = γΩT ′
+ gives

T ′
+ =

C ′

c′+
=

C ′

cγΩ(1 − βΩ)
=

T+

γΩ

=
C

cγΩ(1 − βΩ)
(6.41)

46



from which follows C ′ = C —there is no ‘length contraction’ non-Euclidean spatial ge-

ometry or ‘Ehrenfest paradox’.

7 Comparison of the ‘Sagnac effect’, Sagnac interfer-

ometers and the Hafele-Keating experiment

This concluding section considers the fundamental physics underlying (i) the ‘Sagnac
effect’, (ii) the modus operandi of Sagnac interferometers, and (iii) the Hafele-Keating
experiment, which have sometimes been erroneously conflated in the literature [19, 11,
64, 73]. The first important distinction to be made is that between the ‘Sagnac effect’ (i)
relating to signal propagation in the vicinity of the Earth, which is a space-time geometric
effect described by the RRVTR (2.7), and the quantum mechanical phenomenon (ii)
occuring in interferometers with counter-rotating beams of photons or massive particles
when they are in rotational or translational motion. The geometrical Sagnac effect for
microwave signals was discovered [18] while using a geostationary satellite for distant
clock synchronisation, and constitutes an important correction that must be taken into
account in the operation of the GPS [19, 11, 64, 20]. In this latter application only the
Galilean limit of the RRVTR (2.7) (given by setting γΩ = 1 in this equation) is required
by the accuracy of the GPS, so despite statements to the contrary [57, 9, 52] neither
special nor general relativity theory is needed to calculate the Sagnac effect correction for
the GPS.

At lowest non-trivial order in v/c, both photonic and massive-particle Sagnac inter-
ferometers (ii) are most economically described by purely spatial ‘classical’ wave theories
with appropriate phenomenological de Broglie wavelengths. In the language of Feynman’s
space-time formulation of quantum mechanics [68, 69, 70, 71] all Sagnac interferometers
are two path experiments like a Young two-slit experiment, a Michelson interferometer or
a Mach-Zehnder interferometer. The lowest order Sagnac phase shift is, in all cases, given
by the difference in length of the spatial paths, generated by rotation or translational
motion, divided by the de Broglie wavelength and multiplied by 2π. For this calculation,
no consideration of time differences or any other temporal effect is required. However,
as discussed in detail in Refs. [70, 71], at the fundamental quantum-mechanical level, ac-
cording to Feynman’s formulation, the space-time structure of the probability amplitudes
that are in one-to-one correspondence with the space-time paths are completely different
for photons and massive particles, in spite of the fact that the theory does predict the
existence of identical effective, purely spatial, ‘classical’ wave theories.

Since the invariant, free-space, propagator of a particle of mass m has the phase
exp[−imc2∆τ/h̄] where τ is the proper time on the world-line of the particle [72, 70] its
contribution to the phase of the probability amplitude vanishes for a photon. Then the
phase of the probabilty amplitude resides entirely in the decay amplitude of the photon
source [70], being proportional to the difference of production times of the photon in the
two paths and to the energy of the photon. The difference of production times is equal to
the difference of flight times of a photon in the two paths since the time of the detection
event must be the same same in both paths if interference of the probability amplitudes is
to occur. The time difference can either be calculated in the co-rotating or, more generally,

47



comoving, frame of the interferometer, using the RRVTR (2.7), or alternatively, in the
laboratory frame, using Galilean kinematics, subsequently transforming the time intervals
found in this case into the comoving frame of the interferometer by use of an appropriate
time dilation relation.

In contrast, for the case of massive particles (typically neutrons or electrons) the phase
of the probability amplitude is given entirely by the space-time propagator of the particle,
and the size of the observed interference effect requires that the particle has a (slightly)
different velocity in the two paths but that it is produced at the same time in both paths.
In this case there is no time difference and therefore no ‘Sagnac effect’ (i). The rationale
for this conclusion is explained in detail in Refs. [70, 71], but will be briefly illustrated
here by analysing, in the notation of the present paper, a simplified version of the electron
Sagnac interferometer experiment of Hasselbach and Nicklaus [73].

A circular interfrometer as shown in Fig. 1 is considered but with a source of electrons
and an electron detector at the extremities of a diameter so that when the interferom-
eter is at rest there are equal path lengths s± = πR. Under clockwise rotation of the
interferometer:

s+ = πR + ΦR, s− = πR − ΦR. (7.1)

It is now assumed that the electron has the same production time in each path but a
different velocity:

s+ = v+t, s− = v−t, Φ = Ωt. (7.2)

It follows from (7.1) and (7.2) that

s+ − s− = 2ΦR = 2ΩtR (7.3)

and

t =
2πR

v+ + v−
≡ πR

v̄
, v+ − v− = 2ΩR ≡ 2vΩ. (7.4)

The lowest order Sagnac phase shift is then given by (7.3) and (7.4) as

∆φe = 2π
(s+ − s−)

λ̄
= 4π

Ω(πR2)p̄

hv̄
=

2ΩAĒ

h̄c2
(7.5)

where Ē is the mean total energy of the electrons, the de Broglie relation λ̄ = h/p̄ and the
relativistic kinematical relation v̄ = p̄c2/Ē have been used. This prediction is the same
as the formula derived in Ref. [73] by use of the WKB approximation.

If it is instead assumed that the electron has the same velocity in the laboratory system
for each path (as must be the case for a photon) a different effective de Broglie wavelength
is obtained. Denoting equal production time paths by ET and equal velocities by EV it
is found that [70, 71]:

λ̄ET =
h

p̄
, λ̄EV =

hp̄

m2c2
(7.6)

then
λ̄EV

λ̄ET

=
p̄2

m2c2
=

v̄2

c2
=

2T̄

mc2
(7.7)

where T̄ is the mean kinetic energy of the electron. With λ̄ET = 0.3 Å, found to be
in good agreement with the phase shifts measured in the experiment of Ref. [73] and a
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typical value of T̄ of 1000 eV in the same experiment then (7.7) gives λ̄EV = 5.8×10−4 Å.
Evidently the prediction of the equal velocity hypothesis is incompatible with the results
of the experiment.

In the experiment of Ref. [73] the maximum separation, 2d of the electron beams was
of order 40 µm and the angular velocity Ω = π rad s−1 so that vΩ ≃ Ωd = 6.3 × 10−5 m
s−1 so that

∆v = v+ − v− = 2vΩ = 1.26 × 10−4ms−1.

From the last member of (7.7) the typical kinetic energy of 1000 eV corresponds to a
velocity of v̄ = 1.88 × 107ms−1 (0.063 c). then,

∆v

v̄
= 6.7 × 10−12

to be compared with a typical spread of electron velocities:

σv

v̄
=

1

2

σT

T̄
=

1

2

0.35 eV

1000 eV
= 1.75 × 10−4.

Thus the velocity spread in the beams is some seven orders of magnitude larger than the
velocity difference needed to satisfy the ‘equal time’ condition of Eq. (7.2).

For comparison the lowest order result for the circular photon interferometer in Fig.2
may be written

∆φγ =
4ΩAEγ

h̄c2
. (7.8)

The factor two difference on the right sides of (7.5) and (7.8) results from the two times
longer path lengths in the photon experiment. In spite of entirely different underlying
microphysics the two formulas are the same.

Since p/h̄ = 2π/λ ≡ k, where k is the wavenumber, Eq. (7.5) may also be written, for
an arbitrary particle, in a Sagnac interferometer of arbitary shape, (see Section 2 above):

∆φ =
2k

v̄
~Ω · ~A. (7.9)

An alternative derivation of this formula was proposed in Ref. [74]. For the case of semi-
circular paths considered above, a Doppler effect due to the the motion of the source in
the laboratory system was used to calculate modified de Broglie wavelengths for clockwise
(+) or counterclockwise (−) propagation:

λ± =
vλ

v ± RΩ
. (7.10)

The Sagnac phase difference was then calculated as:

∆φ = 2π

[

πR

(

1

λ+

− 1

λ−

)]

=
2

v

(

2π

λ

)

πR2Ω =
2k

v
AΩ (7.11)

in agreement with Eq. (7.9). The flaws in this derivation are:

(i) The Doppler-modified wavelength of Eq. (7.10) assumes constant velocity of the
associated ‘matter wave’ in the laboratory frame. Since however however the de
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Broglie wavelength is given by λ = h/p = h/(γmv) for a particle of mass m (specif-
ically, neutrons were considered in Ref. [74]) it is impossible for λ to change if v is
constant.

(ii) In Eq. (7.11) equal path lengths πR were assumed, thus neglecting the motion of
the particle detector, which necessarily results in different path lengths for different
propagation directions. Thus the path-length difference which is the fundamental
physical characteristic of any Sagnac interferometer is not taken into account in the
calculation of Ref. [74].

In summary, the calculation of Ref. [74] is a physically nonsensical one which, fortuitously,
gives the correct result.

Another ‘derivation’ of Eq. (7.5) may be found in Ref. [75]. In this case the non-
relativistic limit Ē → mc2 of (7.5) was considered:

∆φS =
2m

h̄

∫

~Ω · d ~A. (7.12)

The similarity between the Sagnac phase difference in Eq. (7.12) and the Aharonov-
Bohm (AB) phase shift [76, 77] produced by an enclosed flux of magnetic field between
two alternative paths for the passage of a particle of charge e:

∆φAB =
e

h̄c

∫

~B · d ~A (7.13)

was noted, as well as that, via the substitution (e/c) ~B → 2m~Ω (7.12) is obtained from
(7.13). This is a (perhaps interesting) remark, but certainly not (as claimed in Ref. [75]) a
derivation of ∆φS. In fact the microphysical physical bases of the Sagnac and AB effects
are quite different. In the Sagnac effect the paths in the laboratory frame corresponding
to the interfering probability amplitudes have a different length. In the AB effect the
paths may be of equal length or different lengths, with or without, the presence of the
magnetic field and the probability amplitudes are modified by the dynamical effect of the
magnetic vector potential,which occurs in the Lagrangian,L that specifies the phase of
the probability amplitude [68, 78]:

φ = iS = i
∫

Ldt. (7.14)

Since the magnetic field is given by spatial derivatives of the magnetic vector potential it
may well vanish along the paths of the interferometer. The dynamical effects responsible
for the intereference phase are due only to the magnetic vector potential itself which does
not vanish in the region of the paths. In contrast in the Sagnac effect the probability am-
plitudes correspond to free-space particle propagation and the changes in the interference
phase result from path length differences that are proportional to the angular velocity
of the interferometer. The Sagnac and AB experiments are both ‘two-path’ experiments
where single particles ‘interfere with themselves’ but, in view of the very different under-
lying microphysics of the two types of experiment, there is no deeper analogy as claimed
in Ref. [75].

In spite of the fact that the lowest order (in vΩ/c) Sagnac effect is a simple consequence
of Galilean space-time geometry and that the physical bases of the HKE are purely rel-
ativistic: general relativistic gravitational blue-shift and special-relativistic time-dilation,
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the Sagnac effect and the HKE are often conflated in the literature. This is particularly
the case for the difference of the times (T ′′

±)SR as given in Eq. (5.14) above:

∆THK ≡ (T ′′
+)SR − (T ′′

−)SR = −4πRvE

c2
= −4πR2Ω

c2
= −4AΩ

c2
(HK Expt) (7.15)

and the time difference between counter rotating light signals in a circular Sagnac inter-
ferometer(c.f. Eq. (2.9):

∆TS ≡ T+ − T− =
4AΩ

c2
+ O(β2

Ω) (Sagnac Expt). (7.16)

The fortuitous equality ∆THK = −∆TS has lead many authors to conflate the two ex-
periments and in particlular to claim that ∆THK is a ‘Sagnac effect’.The most extreme
example of this, to be considered now, is to be found in the work reported in Ref. [64]
where an equation equivalent to (7.15) for the HKE is obtained by a purely classical
derivation without any consideration of relativistic time dilation!

Considering a uniformly rotating frame, but neglecting time dilation, the relation
(6.37) obtained in Ref. [64] may be integrated to obtain the time for a light signal to
follow a circular path in the rotating frame:

T ′
S = R

∫

path

dφ′

c
+

2Ω

c2

∫

path
dA [light signal] (7.17)

where dA = R2dφ′/2 is the area swept out by the radius vector of the light signal when
the azimuthal angle changes by dφ′. Making use of Eqs.(5.9) above a relation similar to
(7.17) may be derived by replacing the light signal by the airborne clock of the HKE,
Considering, as in Eq. (7.17), motion of the clock in the same direction as the rotational
motion of the Earth it is found that:

T ′
HK =

∫

path
dτ +

[

β′
A

cR
+

2Ω

c2

]

∫

path
dA [clock] (7.18)

where dτ = dτ ′′
+, a proper time interval of the airborne clock, and the notation of Section

5 above has been used. In Ref. [64] a relation similar to (7.18) was obtained (but without
the β′

A/(cR) term) which was claimed by the author to show the exact correspondence of
the proper time interval

∫

dτ and the time of passage (at speed c in the rotating frame)
R
∫

dφ′/c of a light signal. In order to derive this equation the Galilean version (t = t′,
γΩ = 1) of Eq. (6.16), as given in the quotation from Ref. [61] above) of the Minkowski
invariant interval relation in a rotating frame was invoked:

ds2 =

(

1 − Ω2R2

c2

)

c2(dt′)2 − 2ΩR2dφ′dt′ − R2(dφ′)2. (7.19)

In the notation of Section 5, ΩR/c = βE, Rdφ′/dt′ = β′
A, (7.19) gives:

ds

c
= dt′

[

1 − β2
E

2
− (β′

A)2

2
− βEβ′

A

]

+ O(β4). (7.20)

In the HKE βE ≃ 1.6 × 10−6, β′
A ≃ 1.0 × 10−6. The velocity-dependent terms in the

square brackets of (7.20) are therefore of comparable magnitude. In Ref. [64], however,
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it was assumed that: β2
E, (β′

A)2 ≪ βEβ′
A so as to neglect the terms β2

E/2 and (β′
A)2/2 in

(7.20), as well as that ds/c = dτ ′′
+ = dτ so as to obtain from Eq. (7.20)

T ′
HK =

∫

path
dτ +

2Ω

c2

∫

path
dA [clock Ref. [64]] (7.21)

which has eaxactly the same form as (7.17). The identification of ds/c with dτ ′′
+ is erro-

neous. From the definition of ds2 in terms of temporal and spatial intervals, it can only
be identified with a proper time interval in a frame in which all spatial intervals vanish.
This occurs for a clock at rest in the non-rotating inertial frame —the ECI frame in the
HKE— corresponding to an interval dt of coordinate time not the proper time interval
dτ ′′

+ of the airborne clock. These two time intervals are related by the time dilation rela-
tion (5.6). In summary, Eq. (7.21) which is claimed to demonstrate the equivalence of the
HKE with the Sagnac effect is flawed by an erroneous assignment of proper time intervals
and illigitimate approximations. In it a formula for T ′

HK in which the term βEβ′
A which

originates from relativistic time dilation is claimed to be derived on the assumption of the
Galilean relation t′ = t —a logical impossibility.

In conclusion, in order to understand better the erroneous conflation , on the basis of
Eqs. (7.16) and (7.15) of the Sagnac effect (light signals) and the HKE (moving clocks), re-
spectively. it is instructive to consider in some detail their space-time-geometrical aspects,
so as to better appreciate their similarities and differences.

In both experiments the ECI frame is a preferred one. In the HKE the time dilation
effects of the Earth-bound and airborne clocks are calculated relative to coordinate time as
registered by a hypothetical clock at rest in this frame. In the Sagnac effect, in accordance
with general relativity, light propagation is almost isotropic with a speed less than, but
very close to, c in this frame. In both experiments the observed ‘effects’ are are due to the
rotation, with angular velocity, ~Ω of the ECEF frame relative to the ECI frame. In the
experiments circumnavigation of light signals or clocks through angles of 2π in the ECEF
frame are considered. The definitions of ∆THK in (7.15) and ∆TS in (7.16) are, however,
very different. In (7.15) (T ′′

±)SR are proper time intervals recorded by the airborne clocks
during one rotation in the ECEF frame. The speed of the aircraft relative to the surface
of the Earth is constant in both directions. In (7.16) T± are the times of passage in the
ECI frame of the light signals which move at constant speed in this frame but, due to
the rotation of the Earth have different path lengths. In contrast, in the ECEF frame
the paths have the same length but the light signals have different velocities, which is
in contradiction at first order in βΩ with the standard velocity transformation formula
of SR. The time interval (T ′′

+)SR is different from (T ′′
−)SR due to the time dilation effect

relative to coordinate time. The clocks moving in different directions at the same speed
in the ECEF frame have, due to the rotation of the Earth, different speeds in the ECI
frame, which results in different time dilation factors γ. This implies that the ‘c2’ in the
denominator on the right side of (7.15) has its origin in the (v/c)2 term in the purely
relativistic time dilation factor (see the derivation of Eq. (5.14)):

γ =
1

√

1 − (v/c)2
≃ 1 +

v2

2c2
+ O[(v/c)4].

In contrast the ‘c2’ in Eq. (7.16) originates in a non-relativistic v/c2 term due to different
path lengths at constant speed in the ECI frame or different light signal speeds over the
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same distance 2πR in the rotating ECEF frame, giving, in Galilean space time geometry:

∆TS ≡ T+ − T− = 2πR
[

1

c − ΩR
− 1

c + ΩR

]

=
4πΩR2

c2[1 − (ΩR/c)2]
≃ 4AΩ

c2
.

In the case of the Sagnac effect for massive particles where the phase is given by Eq. (7.5)
there is no difference in the times of passage in opposite directions: T+ = T−. The
origin of the ‘c2’ in the denominator is also special relativity; not time dilation, as in
Eq. (7.15), but the mass energy equivalence equation: E0 = mc2! Even so, the Sagnac
phase difference for massive particles remains, at lowest order, calculable using Galilean
space-time geometry, as in the derivation above of Eq. (7.5).
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Appendix A

Introducing the notation:
x± ≡ ∓βV sin α sin φ± (A.1)

enables Eq. (3.14) to be written

dt± =
Rdφ±

c[
√

1 − β2
V + x2

± + x± ∓ βΩ]
. (A.2)

Neglecting some terms of order β4 or higher in (A.2) gives:

dt+ =
Rdφ±

c [1 + X+]
dφ± + O(β4)

=
R

c
[1 − X+ + X2

+ − X3
+ + ... ]dφ+ + O(β4) (A.3)

where

X+ ≡ x2
+

2
+ x+ − βΩ − β2

V

2
. (A.4)

(A.3) and (A.4) give, on expanding the right side of (A.3) in powers of βΩ and βV :

dt+ =
R

c

[

1 + βΩ + β2
Ω + β3

Ω +
β2

V

2
+ β2

V βΩ − x+

(

1 + 2βΩ + 3β2
Ω +

β2
V

2

)

+x2
+

(

1

2
+ 2βΩ

)]

dφ+. (A.5)

Inspection of (A.2) shows that dt′− at the same level of approximation as dt′+ in Eq. (A.5)
is given by the replacements: x+ → x−, dφ+ → dφ−, βΩ → −βΩ in the latter equation:

dt− =
R

c

[

1 − βΩ + β2
Ω − β3

Ω +
β2

V

2
− β2

V βΩ − x+

(

1 − 2βΩ + 3β2
Ω +

β2
V

2

)

+x2
+

(

1

2
− 2βΩ

)]

dφ−. (A.6)

Using Eqs. (3.12) and (3.13) to write x+ in terms of φ+ gives:

x+ = βV sin α sin(φ+(1 + y+) − φV )

= βV sin α[sin φ+(1 + y+) cos φV − cos φ+(1 + y+) sin φV ]. (A.7)

Also

sin φ+(1 + y+) = sin φ+ cos φ+y+ + cos φ+ sin φ+y+

≃ sin φ+

(

1 − (φ+y+)2

2

)

+ φ+y+ cos φ+

= sin φ+

(

1 − β2
Ω

2
φ2

+

)

+ φ+ cos φ+(βΩ − βΩβV sin α sin(φ+ − φV ) + β2
Ω)

= sin φ+ − β2
Ω

2
φ2

+ sin φ+ + (βΩ + β2
Ω)φ+ cos φ+

−βΩβV sin α[φ+ cos φ+ sin φ+ cos φV − φ+ cos2 φ+ sin φV ] (A.8)
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and

cos φ+(1 + y+) = cos φ+ cos φ+y+ − sin φ+ sin φ+y+

≃ cos φ+

(

1 − (φ+y+)2

2

)

− φ+y+ sin φ+

= cos φ+

(

1 − β2
Ω

2
φ2

+

)

− φ+ sin φ+(βΩ − βΩβV sin α sin(φ+ − φV ) + β2
Ω)

= cos φ+ − β2
Ω

2
φ2

+ cos φ+ − (βΩ + β2
Ω)φ+ sin φ+

+βΩβV sin α[φ+ sin2 φ+ cos φV − φ+ sin φ+ cos φ+ sin φV ]. (A.9)

In these equations terms of order β3
Ω are neglected.

Combining (A.7)-(A.9):

x+ = βV sin α

{

cos φV sin φ+ − sin φV cos φ+ +
β2

Ω

2
(φ2

+ cos φ+ sin φV − φ2
+ sin φ+ cos φV )

+(βΩ + β2
Ω)[φ+ cos φ+ cos φV + φ+ sin φ+ sin φV ]

−βΩβV sin α

2
(φ+ sin 2φ+ cos 2φV − φ+ cos 2φ+ sin 2φV )

}

. (A.10)

Retaining terms of order β2
V and β2

V βΩ in x2
+, (A.10) gives:

x2
+ =

β2
V sin2 α

2
[1 − cos 2φV cos 2φ+ − sin 2φV sin 2φ+]

+β2
V βΩ sin2 α[φ+ sin 2φ+ cos 2φV − φ+ cos 2φ+ sin 2φV ]. (A.11)

Integrating over φ+, making use of the relations:
∫ 2π

0
sin φdφ =

∫ 2π

0
cos φdφ =

∫ 2π

0
φ cos φdφ =

∫ 2π

0
φ cos 2φdφ = 0,

∫ 2π

0
φ sin φdφ = −2π,

∫ 2π

0
φ sin 2φdφ = −π,

∫ 2π

0
φ2 sin φdφ = −4π2,

∫ 2π

0
φ2 cos φdφ = 4π

gives
∫ 2π

0
x+dφ+ = 2πβV βΩ sin α

[

πβΩ cos φV − sin φV +
βV sin α cos 2φV

4

]

, (A.12)

∫ 2π

0
x2

+dφ+ = πβ2
V sin2 α(1 − βΩ cos 2φV ). (A.13)

On integrating over φ+ and making use of (A.12) and (A.13), Eq. (A.5) gives:

T+ =
∫

dt+ =
2πR

c

{

1 + βΩ

[

1 + βV sin φV sin α +
β2

V

2
[2 + (2 − cos 2φV ) sin2 α]

]

+ β2
Ω [1 + βV (2 sin φV − π cos φV ) sin α] + β3

Ω +
β2

V

2
+

β2
V sin2 α

4

}

. (A.14)
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It follows from (A.1) and (3.12) that

x− = βV sin α sin[φ−(1 + y−) + φV ]. (A.15)

Since it also follows from Eqs. (3.13) that:

y− = y+(φ+ → φ−, βΩ → −βΩ, φV → −φV )

then, comparing the first member of (A.7) with (A.15):

x− = x+(φ+ → φ−, βΩ → −βΩ, φV → −φV ).

In consequence, T ′
− is given by making the replacements: βΩ → −βΩ and φV → −φV in

(A.14) to give:

T− =
∫

dt− =
2πR

c

{

1 − βΩ

[

1 − βV sin φV sin α +
β2

V

2
[2 + (2 − cos 2φV ) sin2 α]

]

+ β2
Ω [1 − βV (2 sin φV + π cos φV ) sin α] − β3

Ω +
β2

V

2
+

β2
V sin2 α

4

}

. (A.16)

Eqs. (A.14) and (A.16) are Eqs. (3.18) and (3.19) of the main text.

The motion of the light signal LSD over the left-hand semi-circular path in the FOC
shown in Fig. 1d is given by integration of Eq. (3.28) over the interval 0 < φ+ < π − δ+

with φV = −(π/2 + θ). The corresponding values of x+ and x2
+ are given by (A.10) and

(A.11) above as:

x+ = βV sin α

{

cos φ+ cos θ − sin φ+ sin θ +
β2

2
(φ2

+ sin φ+ sin θ − φ2
+ cos φ+ cos θ)

−(β + β2)[φ+ cos φ+ sin θ + φ+ sin φ+ cos θ]

+
ββV sin α

2
(φ+ sin 2φ+ cos 2θ + φ+ cos 2φ+ sin 2θ)

}

, (A.17)

x2
+ =

β2
V sin2 α

2
[1 + cos 2θ cos 2φ+ − sin 2θ sin 2φ+]

−β2
V β sin2 α[φ+ sin 2φ+ cos 2θ + φ+ cos 2φ+ sin 2θ]. (A.18)

Retaining only first and second order terms in the small quantity δ, the angular integrals
needed to evaluate the quantity T̃+(L) occuring in Eq. (4.6) are:

∫ π−δ

0
sin φdφ = 2 − δ2

2
,

∫ π−δ

0
cos φdφ = δ,

∫ π−δ

0
sin 2φdφ = δ2,

∫ π−δ

0
cos 2φdφ = −δ,

∫ π−δ

0
φ sin φdφ = π(1 − δ2

2
),

∫ π−δ

0
φ cos φdφ = −2 + πδ +

δ2

2
,

∫ π−δ

0
φ sin 2φdφ = −π

2
(1 − 2δ2) − δ

2
,

∫ π−δ

0
φ cos 2φdφ = −π(1 + δ) +

δ2

2
,

∫ π−δ

0
φ2 sin φdφ = π2 − 4 +

δ

2
(3 − π2),

∫ π−δ

0
φ2 cos φdφ = −2π + π2δ − πδ2.
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Substituting (A.16) and (A.17) into Eq. (3.28), performing the integral over φ+ and
retaining only first and second order terms in δ+ yields Eq. (4.12) of the main text.

Subtracting Eq. (4.17) from (4.16) and introducing the quantity: α̃ ≡ 1 + αT gives:

∆T trans ≡ T trans
+ − T trans

−

=
2nL

c

[

α̃ + β1

(α̃ + β−)(α̃ + β+)
− α̃ − β1

(α̃ − β−)(α̃ − β+)

]

=
2nL

c

[

(α̃ + β1)(α̃ − β−)(α̃ − β+) − (α̃ − β1)(α̃ + β−)(α̃ + β+)

(α̃2 − β2
−)(α̃2 − β2

+)

]

=
4nL

c

[

α̃2(β1 − β− − β+) + β1β−β+

(α̃2 − β2
−)(α̃2 − β2

+)

]

=
4nL

c
{(β1 − β− − β+)[1 − 2αT + β2

− + β2
+] + β1β−β+}

+ O(β5). (A.19)

Substituting for βT , β1, β− and β+ using the formulas given after Eq. (4.16) yields, after
algebraic manupulation, Eq. (4.19) of the main text.

Appendix B

In order to perform the integration of Eq. (5.31) the relations (5.32) are approximated
as:

φE = r̄φA + φV , φA
± = (r̄ ± 1)φA + φV

where r̄ is the average value of r for the range of integration 0 < φA < 2π. Denoting
the coefficients of sin φA

± and sin φE in (5.31) as CA
± and CE

±, and making use the above
approximation, the contribution of these terms to T ′′

± =
∫

dτ ′′
± is

I±
1 =

R

v′
A

∫ 2π

0

[

CA
± sin[φA(r̄ ± 1) + φV ] + CE

± sin[φAr̄ + φV ]
]

dφA ≡ R

v′
A

∫ 2π

0
f±

1 dφA. (B.1)

Expanding the sine functions:

f±
1 = [CA

± sin φA(r̄±1)+CE
± sin φAr̄] cos φV +[CA

± cos φA(r̄±1)+CE
± cos φAr̄] sin φV . (B.2)

Using the integrals:
∫ 2π

0
sin aφdφ =

(1 − cos 2πa)

a
,

∫ 2π

0
cos aφdφ =

sin 2πa

a
(B.3)

and (B.2) it is found that

I±
1 =

2R

v′
A

[

CA
±

r̄ ± 1
+

CE
±

r̄

]

sin πr̄ sin(πr̄ + φV ). (B.4)

Analogous calculations for the sinφA
± sin φE (AE) and sin2 φA

± (AA) terms in (5.31) yield
the respective results:

I±
2 = −RCAE

± sin 2πr̄ cos 2(πr̄ + φV )

2v′
A(2r̄ ± 1)

, (B.5)

I±
3 =

RCAA
±

2v′
A

[

2π − sin 2πr̄ cos 2(πr̄ + φV )

r̄ ± 1

]

. (B.6)
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With the definitions:

r̄ ≡ βΩγ̄E

β′
A

≡ r0γ̄E

where γ̄E is the average value of the time dilation factor given by Eq. (5.26) when φA

varies over the range 0 to 2π then

γ̄E = 1 +
β2

V

2
+

β2
Ω

2
− βV β′

A

π
sin πr0 sin(πr0 + φV ) + O(β4). (B.7)

Combining (B.4)-(B.7) with the definitions of the coefficients CA
± , CE

±, CAE
± and CAA

± that
can be read off from Eq. (5.32) it is found that:

T ′′
± =

∫

dτ ′′
± =

2πR

v′
A

{

1 − β′
A

[

(1 − β2
V )(

β′
A

2
± βΩ) + β′

A

(

β2
Ω ± βΩβ′

A

2
− (β′

A)2

8

)]

+
β2

V β2
Ω

2
± βV (β′

A)2

π(βΩ ± β′
A)

[

β2
V

2
− β2

Ω

2
∓ β′

AβΩ − βV β′
A

π
F1(r0)

]

F1(r0)

+
β2

V β′
A(βΩ ± β′

A)

4π

[

βΩ

2βΩ ± β′
A

− 1

2

]

F2(r0)

}

+ O(β5). (B.8)

where

F1(r0) ≡ sin πr0 sin(πr0 + φV ), F2(r0) ≡ sin 2πr0 sin 2(πr0 + φV ).

With T ′ ≡ 2πR/v′
A Eq. (5.33) of the main text follows directly from Eq. (B.8).
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