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Abstract

The Sagnac effect is analysed in both Galilean and Special relativity within a space-time
geometrical model previously developed by Langevin and Post. The effect arises because of
the different velocities of different light signals relative to the interferometer. The appropriate
relativistic relative velocity transformation formulas obtained differ from the velocity transfor-
mation formulas of conventional Special relativity, the latter actually predicting that the Sagnac
effect vanishes. The Michelson-Morley experiment is analysed using the same model and a non-
vanishing fringe shift, albeit below the sensitivity of all such experiments performed to date, is
predicted. The Sagnac effect for neutrinos of the CERN CNGS beam is also discussed. The
Sagnac effect indicates that the ECI (Earth Centered Inertial) frame is a preferred one in which
light signals have a speed close to c, in the vicinity of the Earth, as predicted by General
relativity.

PACS 03.30.+p

Sagnac published the results of his rotating interferometer experiment in 1913 [1]. The
principle of the experiment is shown in Fig. 1. Light from a source S is split into two
beams by a half-silvered mirror HSM. With the aid of the corner mirrors M1, M2, M3 the
light beams return to HSM via clockwise (HSM M1 M2 M3 HSM) or anti-clockwise (HSM
M3 M2 M1 HSM) routes where they are combined into a single beam which is observed
at D. When the whole apparatus, including the light source and the detector (which in
Sagnac’s original experiment was a photographic plate) is rotated a fringe shift ∆Z is
observed, corresponding, at lowest order in the angular velocity, to a phase difference
between the counter-rotating beams of: ∆φ = 2π∆Z = 8π~Ω · ~A/(λ0c) where ~Ω is the
angular velocity vector, λ0 is the vacuum wavelength of the light, | ~A| is the area enclosed
by the circulating light beams and ~A is perpendicular to the plane of the interferometer.
This phase shift formula, for the case when ~A is parallel to ~Ω and the axis of rotation
passes through the center of a square interferometer, is derived below, from considerations
of space-time geometry, in both Galilean and Special relativity.

It is interesting to note that, although Einstein had declared the luminiferous aether to
be ‘superfluous’ in 1905 [2], the title of Sagnac’s paper was ‘L’éther lumineux démontré par
l’effect du vent relatif d’éther dans un interférometer en rotation uniform’, or, in English:
‘Demonstration of the existence of the luminiferous aether by an aether wind effect in a
rotating interferometer’. It was to search for just such an ‘aether wind’ that the Michelson-
Morley experiment [3] and its successors [4, 5, 6, 7, 8, 9] were performed, with negative
results in almost all cases. As discussed below, this is not because an ‘aether wind’ does
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Figure 1: A Sagnac interferometer. Light signals from a source S are split by the half-silvered-mirror
HSM into two beams which follow clockwise (HSM M1 M2 M3 HSM) or anti-clockwise (HSM M3 M2

M1 HSM) paths, of equal length, back to HSM where they are recombined and detected at D. When the
interferometer is rotated with angular velocity Ω, a phase shift develops between clockwise- and anti-
clockwise-rotating beams due to different times-of-passage of the light signals. The latter result from
different velocities of clockwise- and anti-clockwise-rotating light beams relative to the interferometer.
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not exist, but because the corresponding phase shift is of order (v/c)2 to be compared with
order v/c for the observed phase shift in Sagnac’s interferometer. Sagnac’s experiment
was repeated, with much improved precisison, by Pogany [10] and especially by Michelson
and Gale [11] who used the effect to measure the speed of rotation of the Earth. More
recently a related experiment —the ring laser— where counter-rotating laser beams have
different characteristic frequencies when the device is rotated [12] was demonstrated and
the Sagnac experiment itself was repeated using fibre optic light guides which enabled the
development of highly sensitive fibre-optic gyroscopes [13, 14, 15] to detect rotation. Even
more recently, it has been shown [16, 17], also by the use of fibre-optic interferometers,
that relative translational motion also results in a phase shift due to the same space-
time geometrical effect that underlies the original Sagnac experiment. The phase shift
for translational motion is [16]: ∆φ = 4πL∆v/(λ0c) where L is the length of the fibre
optic path and ∆v the change in the relative velocity of the light signals and the moving
interferometer in the laboratory system. The present paper considers only the theory
of the original rotating Sagnac experiment, however the essential underlying physics –
different velocities of light signals relative to various elements of the interferometer— is
the same for all Sagnac-type experiments whether in rotation or uniform translational
motion.

Figure 2: Space-time geometry in Galilean relativity of the passage of a light signal between end
mirrors M2 and M3 of the Sagnac interferometer shown in Fig. 1. a) in the laboratory frame; b) in
the co-rotating frame of the interferometer. See text for discussion.

The analysis will be first performed in the context of Galilean relativity, before con-
sidering the special relativistic analysis as previously done by Post [18], by suitable mod-
ification of a space-time geometrical calculation originally due to Langevin [19].
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The fundamental space-time effect underlying the phase shift is a different transit
time from beam-splitter to beam-splitter for clockwise- and anticlockwise-rotating beams,
when the interferometer is rotating (see Fig. 1). In Fig. 2a a clockwise-moving photon
with polar coordinates (r,φ) is at position P in the rotating interferometer shown in Fig. 1.
The velocity, cr, of the photon, relative to P, is, from the geometry of Fig. 2a:

cr = c − Ωr cos φ = c − ΩL. (1)

where length of the path of the light signal between mirrors is 2L. In Galilean relativity
this is also the velocity of the photon, relative to P, in the co-rotating frame of the
interferometer, where P is at rest, as shown in Fig. 2b. In the co-rotating frame, the
photon moves parallel to the x-axis. The time dt+ to cover an infinitesimal spatial
interval dx including P is then:

dt+ =
dx

cr

=
rdφ

cos φ(c − ΩL)
=

Ldφ

cos2 φ(c − ΩL)
=

Ld(tan φ)

(c − ΩL)
. (2)

Integrating over the range: −π/4 < φ < π/4 gives

t+ =
L

(c − ΩL)

∫ 1

−1

d(tan φ) =
2L

(c − ΩL)
. (3)

If T+ (T−) is the clockwise (anti-clockwise) flight time of the photon from HSM to HSM,
the 4-fold symmetry of the interferometer gives:

T± = 4t± =
8L

(c ∓ ΩL)
. (4)

The phase shift due to rotation of the interferometer is then:

∆φGR = 2πν(T+ − T−) =
32πνΩL2

c2(1 − β(L)2)
=

8πΩAγ(L)2

λ0c

=
8πΩA

λ0c
(1 + β(L)2) + O(β(L)5). (Galilean relativity) (5)

where β(L) ≡ ΩL/c, γ(L) ≡ 1/
√

1 − β(L)2 and A = 4L2 is the area enclosed by the
circulating light beams. The frequency ν here is that of the source as observed in the
co-rotating frame. Since the distances between the source and the various elements of
the interferometer are constant there is no classical Doppler effect

In special relativity, time dilation occurs in the comoving inertial frame of the point
P of the interferometer, so that, in the co-rotating frame the time interval dt± is replaced
by dt′± = dt±/γ(r) so that

dt′± =
dt±
γ(r)

=
Ldφ

cγ(r) cos2 φ(1 ∓ β(L))
. (6)

Then, since r = L/ cos φ,

1

γ(r)
=

√

1 − α2 tan2 φ

γ(L)
(7)
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where α ≡ β(L)γ(L). With the aid of the substitution α tan φ = sin θ Eq. (6) may be
integrated to give:

T ′
± = 4

∫

dt′± =
4L

c

√

1 ± β(L)

1 ∓ β(L)

[

arcsinα

α
+
√

1 − α2

]

(8)

and a Sagnac phase shift of:

∆φSR = 2πν(T ′
+ − T ′

−) =
4πΩAγ(L)

λ0c

[

arcsinα

α
+
√

1 − α2

]

=
8πΩA

λ0c

[

1 +
5β(L)2

3

]

+ O(β(L)5). (Special relativity) (9)

The frequency ν here is defined as in Eq. (5) in the case that the source and the HSM
are at the same distance from the axis of rotation and so have the same velocity in the
laboratory frame. If this is not the case, then the frequency of the light incident on the
HSM will be shifted in frequency due to a differential time dilation effect [20, 21].

It is interesting, in view of a comparison with the previously published work of Post
[18], to also consider a circular geometry for the interferomenter (see Fig. 8 of Ref [18])
in which the relative velocities of the light signals and the interferometer are given by:

c±r = c ∓ ΩR (10)

where c+
r (c−r ) are the velocites of clockwise (anticlockwise) rotating light signals, relative

to an adjacent point on the interferometer, in the laboratory system, and R the radius
of the circular light path. The times-of-passage of the light signals from beam-splitter to
beam-splitter in the laboratory system for the counter-rotating signals are:

T± =
2πR

c±r
=

2πR

c ∓ ΩR
. (11)

In Galilean relativity T± = T ′
± where T ′

± are the times of passage in the co-rotating frame
of the interferometer, so the corresponding Sagnac (S) phase shift is:

∆φS
GR = 2πν(T+ − T−) =

8π2νRβ(R)

c(1 − β(R)2)
=

8πΩAγ(R)2

λ0c

=
8πΩA

λ0c
(1 + β(R)2) + O(β(L)5). (Galilean relativity) (12)

where A = πR2.
In special relativity, due to the time dilation effect, the times-of-passage of light signals

are different in the laboratory and co-rotating frames:

T ′
± =

T±

γ(R)
(13)

so that the phase shift becomes:

∆φS
SR =

8πΩAγ(R)

λ0c
=

8πΩA

λ0c

[

1 +
β(R)2

2

]

+ O(β(R)5). (Special relativity) (14)
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In view of the time dilation relations (13) the relative velocities of the light signals
and the interferometer are not the same in the laboratory and co-rotating systems in the
special relativistic case:

T ′
± ≡ 2πR

(c±r )′
=

T±

γ(R)
=

2πR

γ(R)[c ∓ ΩR]
=

2πR

γ(R)c±r
(15)

so that the relative velocities of the light signals and the interferometer transform between
the laboratory and co-rotating frames as

(c±r )′ = γ(R)c±r = γ(R)[c ∓ ΩR]. (16)

The corresponding formula for angular velocities and clockwise-rotating signals was deriveda

by Post [18]:
ω′ = γ(R)(ω − Ω) (17)

where ω′ ≡ (c+
r )′/R and ω ≡ c/R.

The relative velocity transformation formula (16) differs markedly from the relativistic
parallel velocity addition relation (RPVAR) [2] which gives:

(c±)′ ≡ c ∓ ΩR

1 ∓ c(ΩR)
c2

= c
1 ∓ ΩR

c

1 ∓ ΩR
c

= c. (18)

The light signals are therefore predicted by the RPVAR to have the same velocity in the
co-rotating frame as they do in the laboratory frame. In consequence T ′

+ = T ′
− = 2πR/c

so that the Sagnac effect vanishes. For an interferometer with a square configuration
as shown in Fig. 1, the velocity vectors of a local point on the interferometer and the
light signals are not, in general, parallel and the conventional relativistic velocity addition
formula [2] gives:

(c±)′ ≡ c ∓ Ωr cos φ

1 ∓ c(Ωr cos φ)
c2

= c
1 ∓ Ωr cos φ

c

1 ∓ Ωr cos φ

c

= c (19)

and again the Sagnac effect vanishes. It is clear from (18) and (19) that the usual
relativistic velocity addition formulas are not applicable to the space-time analysis of a
Sagnac interferometer.

Writing the RPVAR in terms of scaled velocities βv ≡ v/c:

βu′ =
βu − βv

1 − βuβv

(20)

it is straightforward to show that this equation is mathematically equivalent to b either
of the formulas:

γu′ = γuγv(1 − βuβv), (21)

γu′βu′ = γuγv(βu − βv) (22)

aPost actually obtained, by consideration of the geometry of his Fig. 8, and taking into account the time dilation
effect in modifying the original Galilean calculation of Langevin [19] the formula dφ = dφ′+γ(R)Ωdt′. This is Eq. (24)
of [18]. From this follows: dφ/dt′ = dφ′/dt′+γ(R)Ω. Time dilation gives dφ/dt′ = γ(R)dφ/dt so that ω′ = γ(R)(ω−Ω)
where ω ≡ dφ/dt and ω′ ≡ dφ′/dt′.

bThat is, by postulating any one of Eqs. (20), (21) and (22) the remaining two may be obtained by purely algebraic
manipulation.
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where γv ≡ 1/
√

1 − β2
v , which, in turn, are, respectively, equivalent to the transformation

relations of relativistic energy: E = γvmc2, and momentum: p = γvmv. Thus one correct
physical interpretation of the RPVAR is to be found in relativistic kinematics rather
than in space time geometry. For further discussion of this important point see Refs.
[22, 23]. The formula (21) also gives the transformation of the time dilation factor γ

between different inertial frames, as exemplified by its application to the Hafele-Keating
experiment [24].

The Michelson-Morley (MM) experiment will now be analysed in the same manner
as the Sagnac interferometers discussed above, i.e. it will be assumed that the speed of
light has the value c in the laboratory frame and the formula (16) will be used to find the
relative velocity of the light signals in the rest frame of the interferometer, which is an
inertial frame, rather than the uniformly rotating one of a Sagnac interferometer. The
appropriate ‘laboratory frame’ for experiments performed on the surface of the Earth will
be discussed below. The analysis of light signals in the transverse arm of a Michelson
interferometer is familar from elementary derivations of the time dilation relation [25] —
the velocity of the light signals is equal to c, both in the laboratory frame and in the rest
frame of the interferometer— so that, if the length of each arm is D, the time-of-passage
in the transverse arm in the interferometer rest frame is T ′

T = 2D/c. If v is the velocity
of interferometer in the laboratory system, then on making the replacement ΩR → v in
(16), the time-of-passage in the rest frame of the interferometer of the light signal in the
longitudinal arm is:

T ′
L =

D

cγv

[

1

1 − βv

+
1

1 + βv

]

=
2Dγv

c
. (23)

If the interferometer is rotated through 90◦ around a vertical axis the longitudinal and
transverse arms are exchanged resulting in a phase shift proportional to twice the time
difference T ′

L − T ′
T:

∆φMM
SR = 2[2πν(T ′

L − T ′
T)] =

8πD

λ0

(γv − 1) =
4πD

λ0

β2
v + O(β4

v). (Special relativity) (24)

In Galilean relativity the phase shift is, at O(β2
v), a factor of two larger. For comparison

the phase shift in the Sagnac interferometer of Fig. 1 may be written as:

∆φS
SR =

32πL

λ0

β(L) + O(β(L)3). (25)

The β2
v dependence of ∆φMM

SR as compared to the β(L) dependence of ∆φS
SR explains why

the Sagnac experiment successfully detected an ‘aether wind’ on the surface of the Earth
while the MM experiment and later improved versions operating on the same principle
failed to do so. In the Michelson-Gale Sagnac experiment situated at latitude 41◦46′N the
value of β(L) for the East-West pointing arm of the interferometer due to the rotation
of the Earth was (0.34 km/s)/c = 1.1× 10−6. The corresponding Sagnac phase shift was
0.23 of a fringe width. Placing a Michelson interferometer with a similar light source and
dimensions 2L ≃ D = 0.5 km at the same latitude as the Michelson-Gale experiment
Eqs. (24) and (25) predict, for the ratio of phase shifts:

∆φMM
SR

∆φS
SR

=
β(L)

4
= 2.8 × 10−7 (26)
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corresponding to a phase shift of 6.3 × 10−8 of a fringe in the Michelson interferometer.
In interpreting the results of the MM experiment and its successors it was usually

assumed that the ‘aether’ was at rest relative to the Solar System which corresponds
to a value of βv in (24) equal the the speed of rotation of the Earth around the Sun
of 29.8 km/s so that βv ≃ 10−4. This gives a phase shift in a Michelson interferometer
104 times larger than a value of βv corresponding to the rotation of the Earth about
its polar axis. The upper limit: βv ≃ 10−5 (v ≃ 10 km/s) obtained by the Kennedy-
Thorndike experiment [7], which has a sensitivity of about 10−5 of an interference fringe
width, was still some 30 times larger than the velocity of the surface of the Earth in
the Michelson-Gale experiment. At least another two orders of magnitude improvement
in the sensitivity of a Michelson interferometer would therefore be needed to detect the
speed of the ‘aether wind’ generated by the rotation of the Earth.

Figure 3: Space-time geometry of the passage of a light signal in the longitudinal arm of a Michelson
interferometer. The latter is at rest on the surface of the Earth with the arm directed in the West-
to-East direction. The laboratory frame is the ECI frame and the velocity v of the interferometer is
due to the rotation of the Earth. See text for discussion.

The space-time geometry for the passage of a light signal in the longitudinal arm of
a Michelson interferometer between the half-silvered-mirror HSM and the end mirror of
the arm, ML is shown in Fig. 3. The light signal travels at speed c in the laboratory
frame while the velocity v of the interferometer in the West-to-East direction, is due to
the rotation of the Earth, i.e. the interferometer is at rest on the surface of the Earth.
The light signal leaves HSM at laboratory time t = 0 and reaches ML when t = tL. The
geometry of Fig. 3b gives:

ctL = vtL + D(lab) (27)
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where D(lab) is the separation of HSM and ML in the laboratory frame. The speed of
the light signal in the rest frame of the interferometer is given by Eq. (16) as:

(c+
r )′ = γv(c − v) (28)

so that the time-of-passage of the light signal in the rest frame of the interferometer, t′L,
is

t′L =
D

(c+
r )′

=
D

γv(c − v)
=

DtL
γvD(lab)

(29)

where, in the last member, Eq. (27) is used, after transposition, to eliminate c − v.
Combining the time dilation relation

tL = γvt
′
L (30)

with (29) then shows that
D(lab) = D. (31)

There is no ‘length contraction’ effect.
In the conventional interpretation of the MM experiment the failure to observe any

phase shift between signals in the longitudinal and transverse arms is assumed to imply
that T ′

L = T ′
T. The space-time geometry of the laboratory frame gives a time-of-passage

of the light signal from HSM to ML and back, in this frame, of:

TL = D(lab)

[

1

c − v
+

1

c + v

]

=
2D(lab)

c(1 − β2
v)

. (32)

Now

T ′
T =

2D

c
(33)

and time dilation gives:
TL = γvT

′
L. (34)

Combining (32), (33) and (34), on the assumption T ′
L = T ′

T (no phase shift), gives

TL = γvT
′
L = γvT

′
T =

2γvD

c
=

2D(lab)

c(1 − β2
v)

(35)

from which follows:

D(lab) =
D

γv

. (T ′
L = T ′

T) (36)

This is the ‘length contraction’ effect [26] which explains a null result for the MM ex-
periment in conventional Special relativity. As explained above, for consistency with the
observed Sagnac effect, a non-vanishing phase shift must exist in a MM-type experiment,
but, to date, no such experiment has had sufficient sensitivity to observe the phase shift.
For further discussion of the spurious nature of ‘length contraction’ and ‘relativity of
simultaneity’ see [22, 23] and references therein.

As described in Refs. [27, 28] corrections for the Sagnac effect are routine in the
operation of the Global Positioning System (GPS). The velocity of GPS microwave signals
in the rest frame of a GPS receiver are calculated according to the Galilean formula (1)
above. Similar corrections are applied in tests, using the GPS, of the isotropy of the
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speed of light [29]. In this case, as also in the Michelson-Gale experiment, the ‘laboratory
frame’, in which the speed of light is assumed to be c, is the Earth-Centered-Inertial
(ECI) frame which is the co-moving inertial frame of the centroid of the Earth with axes
pointing to fixed directions on the celestial sphere. It is in this frame that the Earth’s
gravitational field is given by the Schwartschild metric [30, 31] and which effectively
contains the ‘aether’, relative to which, ‘winds’ were observed by Sagnac, and Michelson
and Gale. It is indeed a prediction of General relativity that, in just this frame, the speed
of light is (very nearly) equal to c. ‘Very nearly’ because of the Shapiro delay [32] of light
signals crossing the Earth’s gravitational field. For signals from the GPS satellites such
delays are less than 200ps [27] and so give no preceptible effect in GPS operation.

The Sagnac effect for neutrinos of the CERN CNGS beam [33] as detected in OPERA [34]
in the Gran Sasso Laboratory has recently been considered [35]. Neutrinos, with energies
around 17 GeV, from decays of charged pions or kaons are directed in a roughly South-
Easterly direction through the crust of the Earth and are detected after a flight distance
of about 730 km in the underground detector OPERA. As for photons in the Sagnac and
Michelson-Gale experiments, the neutrinos are expected to have speed c in the ECI frame.
During the 2.4 ms time-of-flight of the neutrinos the OPERA detector moves a distance
0.835 m [35] in an Easterly direction due to the rotation of the Earth. This increases
the time-of-flight of the neutrinos by 2.2 ns [35]. This implies, in turn, that that the
neutrinos have an average speed, in the co-moving inertial frame of OPERA (in which
the CERN-OPERA separation is constant), that is 9.05 × 10−2 % less than c. Notice
that if the CERN neutrino beam were instead directed in a South-Westerly direction the
measured speed of the neutrinos would be, by a similar fraction, greater than c, so that
when the Sagnac efect is taken into account speeds of particles relative to detectors are
not limited to be less than or equal to c. Making use of detailed survey information on
the positions of the neutrino source and the OPERA detector [36] the angle, α, between
the neutrino beam direction and the direction of motion of OPERA in the ECI frame is
found to be α = 37.8◦.

According to the conventional velocity transformation formulas of special relativity [2]
the velocity components of the neutrinos, parallel to (v‖), and perpendicular to (v⊥), the
direction of motion of OPERA, in the co-moving inertial frame of the latter, when they
are assumed to have speed c in ECI frame, are:

v‖ = c

[

cos α − βO

1 − βO cos α

]

(37)

v⊥ = c

[

sin α

γO(1 − βO cos α)

]

(38)

where βO ≡ vO/c, γO ≡ 1/
√

1 − β2
O and vO = 323 m/s is the speed of OPERA in the

ECI frame. The speed, v, of the neutrinos in the OPERA frame is then given by:

v2 = v2
‖ + v2

⊥ = c2

[

(γ2
O − 1) cos2 α − 2βOγ2

O cos α + γ2
Oβ2

O + 1

γ2
O(1 − βO cos α)2

]

= c2

[

γ2
Oβ2

O cos2 α − 2βOγ2
O cos α + γ2

O

γ2
O(1 − βO cos α)2

]

= c2 (39)

(where the identity γ2
O ≡ γ2

Oβ2
O + 1 has been used) so that the Sagnac effect vanishes.
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The current OPERA measurement [37] of the neutrino time-of-flight gives a value of
v significantly greater than c:

(v − c)/c = (2.48 ± 0.28(stat) ± 0.3(syst)) × 10−5

This 6.0 σ effect increases to 6.2 σ whan the Sagnac effect (not considered in [37]) is
taken into account. In order for the velocity measurement to be sensitive to the Sagnac
effect, at least an order of magnitude reduction in the uncertainty of the time-of-flight
measurement (currently ≃ 10ns) is required. In contrast, the uncertainty of 20 cm in the
flight distance given in [36] is about a factor of four less than the displacement due to the
Sagnac effect.

The final conclusions are that the ECI frame constitutes a physically-preferred refer-
ence system for light signals or neutrinos in the vicinity of the Earth and that the Sagnac
effect is not correctly described by the velocity transformation formulas of conventional
special relativity. There is clearly an important mismatch between what is known and
applied by the engineers of the GPS system, and the content of the scientific literature
and text books on Special relativity theory, that needs to be rectified.
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