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Abstract

The Sagnac effect is analysed in both Galilean and Special relativity within a space-time
geometrical model previously developed by Langevin and Post. The effect arises because of
the different velocities of different light signals relative to the interferometer. The appropriate
relativistic relative velocity transformation formulas obtained differ from the velocity transfor-
mation formulas of conventional Special relativity, the latter actually predicting, as previously
pointed out by Dufour and Prunier and, more recently, by Selleri and Klauber, that the Sagnac
effect vanishes. The Michelson-Morley experiment is analysed using the same model and a
non-vanishing fringe shift, albeit below the sensitivity of all such experiments performed to
date, is predicted. The Sagnac effect for neutrinos of the CERN CNGS beam is also discussed.
The Sagnac effect indicates that the ECI (Earth Centered Inertial) frame is a preferred one in
which light signals have a speed close to c, in the vicinity of the Earth, as predicted by General
relativity.

PACS 03.30.+p

Sagnac published the results of his rotating interferometer experiment in 1913 [1].
The principle of the experiment is shown in Fig. 1. Light from a source S is split into
two beams by a half-silvered mirror HSM. With the aid of the corner mirrors M1, M2,
M3 the light beams return to HSM via clockwise (HSM M1 M2 M3 HSM) or counter-
clockwise (HSM M3 M2 M1 HSM) routes where they are combined into a single beam
which is observed at D. When the whole apparatus, including the light source and the
detector (which in Sagnac’s original experiment was a photographic plate) is rotated a
fringe shift ∆Z is observed, corresponding, at lowest order in the angular velocity, to a
phase difference between the counter-rotating beams of: ∆φ = 2π∆Z = 8π~Ω · ~A/(λ0c)
where ~Ω is the angular velocity vector, λ0 is the vacuum wavelength of the light, | ~A| is
the area enclosed by the circulating light beams and ~A is perpendicular to the plane of
the interferometer. This phase shift formula, for the case when ~A is parallel to ~Ω and the
axis of rotation passes through the center of a square interferometer, is derived below,
from considerations of space-time geometry, in both Galilean and Special relativity.

It is interesting to note that, although Einstein had declared the luminiferous aether to
be ‘superfluous’ in 1905 [2], the title of Sagnac’s paper was ‘L’éther lumineux démontré par
l’effect du vent relatif d’éther dans un interférometer en rotation uniform’, or, in English:
‘Demonstration of the existence of the luminiferous aether by an aether wind effect in a
rotating interferometer’. It was to search for just such an ‘aether wind’ that the Michelson-
Morley experiment [3] and its successors [4, 5, 6, 7, 8, 9] were performed, with negative
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Figure 1: A Sagnac interferometer. Light signals from a source S are split by the half-silvered-mirror
HSM into two beams which follow clockwise (HSM M1 M2 M3 HSM) or counter-clockwise (HSM M3

M2 M1 HSM) paths, of equal length, back to HSM where they are recombined and detected at D.
When the interferometer is rotated with angular velocity Ω, a phase shift develops between clockwise-
and counter-clockwise-rotating beams due to different times-of-passage of the light signals. The latter
result from different velocities of clockwise- and counter-clockwise-rotating light beams relative to the
interferometer.
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results in almost all cases. As discussed below, this is not because an ‘aether wind’ does
not exist, but because the corresponding phase shift is of order (v/c)2 to be compared with
order v/c for the observed phase shift in Sagnac’s interferometer. Sagnac’s experiment
was repeated, with much improved precisison, by Pogany [10] and especially by Michelson
and Gale [11] who used the effect to measure the speed of rotation of the Earth. More
recently a related experiment —the ring laser— where counter-rotating laser beams have
different characteristic frequencies when the device is rotated [12] was demonstrated and
the Sagnac experiment itself was repeated using fibre optic light guides which enabled the
development of highly sensitive fibre-optic gyroscopes [13, 14, 15] to detect rotation. Even
more recently, it has been shown [16, 17], also by the use of fibre-optic interferometers,
that relative translational motion also results in a phase shift due to the same space-
time geometrical effect that underlies the original Sagnac experiment. The phase shift
for translational motion is [16]: ∆φ = 4πL∆v/(λ0c) where L is the length of the fibre
optic path and ∆v the change in the relative velocity of the light signals and the moving
interferometer in the laboratory system. The present paper considers only the theory
of the original rotating Sagnac experiment, however the essential underlying physics –
different velocities of light signals relative to various elements of the interferometer— is
the same for all Sagnac-type experiments whether in rotation or uniform translational
motion.

Figure 2: Space-time geometry in Galilean relativity of the passage of a light signal between end
mirrors M2 and M3 of the Sagnac interferometer shown in Fig. 1. a) in the laboratory frame; b) in
the co-rotating frame of the interferometer. See text for discussion.

The analysis will be first performed in the context of Galilean relativity, before con-
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sidering the special relativistic analysis as previously done by Post [18], by suitable mod-
ification of a space-time geometrical calculation originally due to Langevin [19].

The fundamental space-time effect underlying the phase shift is a different transit time
from beam-splitter to beam-splitter for clockwise- and counterclockwise-rotating beams,
when the interferometer is rotating (see Fig. 1). In Fig. 2a a clockwise-moving photon
with polar coordinates (r,Φ) in the laboratory frame is at position P in the rotating
interferometer shown in Fig. 1. The velocity, cr, of the photon, relative to P, parallel to
the photon path in the laboratory frame, is, from the geometry of Fig. 2a:

cr = c − Ωr cos Φ = c − ΩL. (1)

where the length of the path of the light signal between successive mirrors is 2L when the
interferometer is at rest. In Galilean relativity, neglecting the displacement of the mirrors
in the laboratory frame, this is also the velocity of the photon, relative to the x-axis, in
the co-rotating frame of the interferometer as shown in Fig. 2b. In this approximation
(i.e. neglecting the rotation of the x-axis in Fig. 2b in the laboratory system during the
passage of the photon from M2 and M3) the time dt+ to cover an infinitesimal spatial
interval dx including P is:

dt+ =
dx

cr

=
rdΦ

cos Φ(c − ΩL)
=

LdΦ

cos2 Φ(c − ΩL)
=

Ld(tan Φ)

(c − ΩL)
. (2)

Integrating over the range: −π/4 < Φ < π/4 gives

t+ =
L

(c − ΩL)

∫ 1

−1

d(tan Φ) =
2L

(c − ΩL)
. (3)

If T+ (T−) is the clockwise (counterclockwise) flight time of the photon from HSM to
HSM, the 4-fold symmetry of the interferometer gives:

T± = 4t± =
8L

(c ∓ ΩL)
. (4)

The phase shift due to rotation of the interferometer is then:

∆φGR = 2πν(T+ − T−) =
32πνΩL2

c2(1 − β(L)2)
=

8πΩAγ(L)2

λ0c

=
8πΩA

λ0c
+ O(β(L)3) (Galilean relativity) (5)

where β(L) ≡ ΩL/c, γ(L) ≡ 1/
√

1 − β(L)2 and A = 4L2 is the area enclosed by the
circulating light beams. The frequency ν here is that of the source as observed in the
co-rotating frame. Since the distances between the source and the various elements of
the interferometer are constant there is no classical Doppler effect

In the Appendix a space-time geometrical calculation in the laboratory frame, correct
to order β(L)3, taking into account the motion of the mirrors during photon transit is
presented. It is found that

∆φGR =
8πΩA

λ0c

(

1 +
11β(L)2

24

)

+ O(β(L)5) (Galilean relativity) (6)
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in agreement, at first order in β(L), with Eq. (5). It is also shown in the Appendix that,
at order β(L), the clockwise photon path, in the co-rotating frame of the interferomter,
is the parabola:

y =
β(L)x2

L
(7)

in agreement with a previous calculation of Silberstein [20]. The paths, in the co-rotating
frame of the interferometer, of clockwise (counterclockwise) moving photons, as shown
in Fig. 2b, have a similar shape and are convex (concave) as viewed from the center of
rotation.

The Sagnac interference phase is a consequence of different times of arrival of the
counter-rotating signals back at the HSM. The appropriate time interval is therefore that
recorded by a clock co-moving with the HSM. In the laboratory frame the HSM has a
velocity of constant magnitude

√
2ΩL, corresponding to the time dilation effect:

∆T =
1

√

1 − 2β(L)2
∆T ′ (8)

so that
∆φSR = 2πν(T ′

+ − T ′
−) = ∆φGR

√

1 − 2β(L)2. (9)

The frequency ν here is defined as in Eq. (5) in the case that the source and the HSM
are at the same distance from the axis of rotation and so have the same velocity in the
laboratory frame. If this is not the case, then the frequency of the light incident on
the HSM will be shifted in frequency due to a differential time dilation effect [37, 38].
Combining (6) and (9):

∆φSR =
8πΩA

λ0c

[

1 − 13β(L)2

24

]

+ O(β(L)5). (Special relativity) (10)

Special relativity therefore contributes only an order β(L)2 correction to the Sagnac phase
difference as calculated in Galilean relativity.

As pointed out by Dufour and Prunier in 1937 [21], as well as later by Selleri [22, 23]
and Klauber [24] the lowest order Galilean prediction of Eq. (5), as well as the relativistic
prediction of Eq. (10), for ∆φ, is inconsistent with naive application of Einstein’s second
postulate of special relativity —that the speed of light is the same in all inertial frames.
In the present problem, this postulate predicts that if the length of an element of the
light path in the instantaneous comoving inertial frame of the fixed point P on the inter-
ferometer in Fig. 2b is δs′ and δt′ is the corresponding proper-time element in the frame
then δs′/δt′ = c, or since time dilation is a second order effect in β(L) :

δs′

δt
= c + O(β(L)2).

Application of the second postulate then predicts that, considering a co-rotating light
signal:

T+ =

∫

dt =
1

c

∫

ds′ =
s′

c
+ O(β(L)2). (11)
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From Eq. (7):

∫

ds′ = 4

∫ L

−L





√

1 +

(

dy

dx

)2


 dx = 4

∫ L

−L

(
√

1 +
4β(L)2x2

L2

)

dx

= 4

∫ L

−L

(

1 +
2β(L)2x2

L2

)

dx + O(β(L)4)

= 8L

(

1 +
2β(L)2

3

)

+ O(β(L)4). (12)

So that

T+ =
8L

c

(

1 +
2β(L)2

3

)

+ O(β(L)4). (13)

This result is in contradiction with Eq. (A20) of the Appendix which gives instead:

T+ =
8L

c

(

1 + β(L) +
β(L)2

2
+

11β(L)3

24

)

+ O(β(L)4 (14)

Also replacing β(L) by −β(L) in Eq. (12) gives T− = T+ at all orders in β(L), and so,
as first pointed out by Dufour and Prunier [21], a vanishing Sagnac interference phase.
Evidently this naive application of the second postulate of special relativity is inconsistent
with the existence of the Sagnac effect.

It is interesting, in view of a comparison with the previously published work of Post
[18], to also consider a circular geometry for the interferomenter (see Fig. 3) in which the
relative velocities of the light signals and the interferometer are given by:

c±r = c ∓ ΩR (15)

where c+
r (c−r ) are the velocites of clockwise (counterclockwise) rotating light signals,

relative to an adjacent point on the interferometer, in the laboratory system, and R the
radius of the circular light path. The times-of-passage of the light signals from beam-
splitter to beam-splitter in the laboratory system for the counter-rotating signals are:

T± =
2πR

c±r
=

2πR

c ∓ ΩR
. (16)

In Galilean relativity T± = T ′
± where T ′

± are the times of passage in the co-rotating frame
of the interferometer, so the corresponding Sagnac (S) phase shift is:

∆φS
GR = 2πν(T+ − T−) =

8π2νRβ(R)

c(1 − β(R)2)
=

8πΩAγ(R)2

λ0c

=
8πΩA

λ0c
(1 + β(R)2) + O(β(L)5). (Galilean relativity) (17)

where A = πR2.
The differential Lorentz transformations from the laboratory system into the instan-

taneous co-moving frame of the beam splitter BS in Fig. 3 are:

dS ′ = 0 = γ(R)(dS − cβ(R)dt), (18)

dt′ = γ(R)

(

dt − β(R)dS

c

)

(19)
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Figure 3: A circular Sagnac interferometer of radius R rotating with uniform angular velocity Ω in the
clockwise direction. Co-rotating (LS+) and counter-rotating (LS−) light signals depart simultaneously
from a beam splitter (BS) when it is positioned at BS0. The signals LS− (LS+) arrive back at BS
when it is in the laboratory frame positions BS− (BS+). In the laboratory frame both light signals
move with speed c. The different arrival times result from different laboratory frame path lengths
followed by the signals. Fot clarity the paths of the light signals, that have equal radii, are shown with
small radial displacements.
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where dS is an element of the path in the laboratory frame of a point on the beam splitter
at the same radial position as the light signals and dS ′ vanishes, since BS is, by definition,
at rest in its co-moving frame. Combining (18) and (19) (eliminating dS between the two
equations) yields the differential time dilation relation:

dt = γ(R)dt′ (20)

which on integration gives:

T ′
± =

T±

γ(R)
(21)

so that the phase shift becomes:

∆φS
SR =

8πΩAγ(R)

λ0c
=

8πΩA

λ0c

[

1 +
β(R)2

2

]

+ O(β(R)5). (Special relativity) (22)

In view of the time dilation relations (21) the relative velocities of the light signals
and the interferometer are not the same in the laboratory and co-rotating systems in the
special relativistic case:

T ′
± ≡ 2πR

(c±r )′
=

T±

γ(R)
=

2πR

γ(R)[c ∓ ΩR]
=

2πR

γ(R)c±r
(23)

These formulas for signal flight times in the co-rotating frame have been previously given
by Tartaglia [25]. Eq. (23) shows that the relative velocities of the light signals and the
interferometer transform between the laboratory and co-rotating frames as

(c±r )′ = γ(R)c±r = γ(R)[c ∓ ΩR]. (24)

in agreement with previous work by Klauber [24]. The corresponding formula for angular
velocities and clockwise-rotating signals was deriveda by Post [18]:

ω′ = γ(R)(ω − Ω) (25)

where ω′ ≡ (c+
r )′/R and ω ≡ c/R.

At order β(R) the above analysis of a circular Sagnac interferometer is the same as
that of Selleri [22, 23]. In particular Selleri gave [23] in both Galilean and (correctly
applied) Special Relativity, the relation, that follows from Eqs. (24):

(c+
r )′

(c−r )′
=

c − ΩR

c + ΩR
.

The ‘inertial transformations’ employed by Selleri differ from the Lorentz transformation
equations (18) and (19) used above only by invoking a spurious ‘length contraction’ effect
arising from misinterpretation of the space transformation equation which is formally
identical to Eq. (18).

aPost actually obtained, by consideration of the geometry of his Fig. 8, (which is similar to Fig. 3 of the present
paper), by taking into account the time dilation effect in modifying the original Galilean calculation of Langevin [19],
the formula dφ = dφ′ +γ(R)Ωdt′. This is Eq. (24) of [18]. From this follows: dφ/dt′ = dφ′/dt′ +γ(R)Ω. Time dilation
gives dφ/dt′ = γ(R)dφ/dt so that ω′ = γ(R)(ω − Ω) where ω ≡ dφ/dt and ω′ ≡ dφ′/dt′.
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The relative velocity transformation formula (24) differs markedly from the relativistic
parallel velocity addition relation (RPVAR) [2] which gives:

(c±)′ ≡ c ∓ ΩR

1 ∓ c(ΩR)
c2

= c
1 ∓ ΩR

c

1 ∓ ΩR
c

= c. (26)

The light signals are therefore predicted by the RPVAR to have (consistent with a naive
application of the second postulate of Special relativity) the same velocity in the instan-
tantaneous comoving inertial frame of a fixed point of the interferometer on the light
path, as they do in the laboratory frame. In consequence T ′

+ = T ′
− = 2πR/c so that the

Sagnac effect vanishes. It is clear from (26) that the usual relativistic velocity addition
formulas are not applicable to the space-time analysis of a Sagnac interferometer.

Figure 4: Worldlines in the laboratory frame of the beam splitter (BS) and co-rotating (LS+) and
counter-rotating (LS−) light signals in the circular Sagnac Interferometer shown in Fig. 3. See text
for discussion.

The space-time geometry of the passages of the light signals BS+ and BS− of Fig. 3
is shown in Fig. 4 in the laboratory system and Fig. 5 in the co-rotating frame of the
interferometer. The abscissas in Fig. 4(5) are the clockwise-oriented path lengths s (s′)
separating the light signals from the initial position of BS. Due to the azimuthal symmetry
of the circular paths of the light signals:

x = x − 2πR × INT
( x

2πR

)

(x = s, s′) (27)

where INT (X) is the integer part of the real number X. Inspection of Fig. 5 shows clearly
the incompatiblity of the existence of the Sagnac effect with the the second postulate of
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special relativity. If the light signals propagate at speed c relative to BS they follow the
‘lightcone’ worldlines LC+ or LC− and it is predicted that:

T ′
+ = T ′

− =
2πR

c
. (28)

Thus the light signals are predicted to arrive simultaneously at BS in its co-moving frame.
This is in violation of the ‘zeroth theorem’ of spacetime physics as enunciated by Langevin
[26, 27] and more recently invoked by Mermin [28]. A triple space-time coincidence
—a common event on the world lines of both light signals and BS— is predicted to
occur in the co-moving frame of BS. All observers must agree that such an event exists,
whereas inspection of Fig. 4 shows that there is no such event in the laboratory frame.
Alternatively it may be noted that the prediction ∆T ′ ≡ T ′

+ − T ′
− = 0 corresponding to

the world lines LC+ and LC− is inconsistent with the time dilation relations (21) and the
non-vanishing value of T+ − T− given by Eq. (16). The latter is a consequence only of
space-time geometry in the laboratory frame and is valid in both Galilean and Special
relativity.

Figure 5: Worldlines in the co-rotating frame of the circular Sagnac Interferometer shown in Fig. 3:
Beam splitter (BS), co-rotating light signal (LS+) and counter-rotating light signal (LS−). Also shown
are the world lines of the light signals, LC+ and LC− as predicted by application of the RPVAR
Eq. (26), See text for discussion.

A common error in the literature, due originally to Langevin [29] and widely propa-
gated due to its effective inclusion in the discussion of the Sagnac effect in a textbook by
Landau and Lifshitz [30], is the derivation of a formula for T+ − T− by misinterpretation
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of the time Lorentz transformation between the instantaneous comoving inertial frame of
a fixed point on the interferometer and the laboratory frame:

t = γ(R)

(

t′ +
β(R)S ′

c

)

(29)

which is the inverse of the integrated version of Eq. (19) above. Assuming the speed of
the light signals in the co-moving frame of LS is c, then t′ = T ′

+ = T ′
− = C ′/c where C ′ is

the length of the light paths in this frame. Then setting S ′ = S ′
+ = C ′ or S ′ = S ′

− = −C ′

in (29) gives:

T̃+ ≡ γ(R)
C ′

c
(1 + β(R)), (30)

T̃− ≡ γ(R)
C ′

c
(1 − β(R)). (31)

So that

∆T̃ = T̃+ − T̃− =
2γ(R)β(R)C ′

c
. (32)

Further assuming length contraction in the laboratory frame of the circumference of the
circular light paths, as suggested by Ehrenfrest [31]b: C ≡ 2πR = C ′/γ(R), (32) gives:

∆T̃ =
4πRγ(R)2β(R)

c
(33)

in agreement with the prediction of (16) above:

∆T ≡ T+ − T− =
4πRβ(R)

c(1 − β(R)2)
. (34)

The calculation above yielding ∆T̃ is claimed to show that the Sagnac effect is purely
relativistic, being an example of the ‘relativity of simultaneity’ effect of special relativity.
This calculation misinterprets the time-interval Lorentz transformation (29). The quan-
tities t, t′ and S ′ in this equation are time or space intervals along the world line of the
beam splitter not the worldlines of the light signals! Since t′ and S ′ are defined in the
proper frame of the latter where (by definition) it is at rest, S ′ =

∫

dS ′ = 0, since, from
Eq. (18), dS ′ = 0. Correctly interpreted therefore, (29) reduces to

t = γ(R)t′ (35)

equivalent to the time dilation relations (21). There is no ‘relativity of simultaneity’ and
the velocity of light must be anisotropic in the proper frame of the beam splitter, in
contradiction to the second postulate of special relativity. The motivation of the choice
of non-zero values of S ′

+ and S ′
− with different signs, in the derivation of Eq. (33), arises

from their false identification with the paths s′± of the counter-rotating light signals in
the proper frame of the beam splitter (see Fig. 5) rather than the null path length of
the beam splitter itself in this frame. Actually there is only one one conceptual ‘clock’
in the analysis of the Sagnac effect, that is situated on the beam splitter, so that the

bNote, in contrast, that Einstein gave arguments [32, 33] according to which the ratio of the circumference of a
rotating disc to its radius, as viewed from an inertial frame at rest relative to its center, should be greater than 2π.
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putative ‘relativity of simultaneity’ effect for two clocks at different spatial locations, can
have no possible relevance to the problem. Also since the Sagnac effect corresponds to
a time interval registered by a single (conceptual) clock, then, contrary to a vast scien-
tific literaturec, any considerations of the relative synchronisation of spatially separated
clocks [35], is irrelevant to a correct understanding of the effect. See Ref. [36] for a critique
of the conventional derivation of ‘relativity of simultaneity’ from the space-time Lorentz
transformations.

Writing the RPVAR in terms of scaled velocities βv ≡ v/c:

βu′ =
βu − βv

1 − βuβv

(36)

it is straightforward to show that this equation is mathematically equivalent to d either
of the formulas:

γu′ = γuγv(1 − βuβv), (37)

γu′βu′ = γuγv(βu − βv) (38)

where γv ≡ 1/
√

1 − β2
v , which, in turn, are, respectively, equivalent to the transformation

relations of relativistic energy: E = γvmc2, and momentum: p = γvmv. Thus one correct
physical interpretation of the RPVAR is to be found in relativistic kinematics rather
than in space time geometry. For further discussion of this important point see Refs.
[39, 40, 41]. The formula (37) also gives the transformation of the time dilation factor γ

between different inertial frames, as may be exemplified by its application to the Hafele-
Keating experiment [42].

The Michelson-Morley (MM) experiment will now be analysed in the same manner
as the Sagnac interferometers discussed above, i.e. it will be assumed that the speed of
light has the value c in the laboratory frame and the formula (24) will be used to find the
relative velocity of the light signals in the rest frame of the interferometer, which is an
inertial frame, rather than the uniformly rotating one of a Sagnac interferometer. The
appropriate ‘laboratory frame’ for experiments performed on the surface of the Earth will
be discussed below. The analysis of light signals in the transverse arm of a Michelson
interferometer is familar from elementary derivations of the time dilation relation [43] —
the velocity of the light signals is equal to c, both in the laboratory frame and in the rest
frame of the interferometer— so that, if the length of each arm is D, the time-of-passage
in the transverse arm in the interferometer rest frame is T ′

T = 2D/c. If v is the velocity
of interferometer in the laboratory system, then on making the replacement ΩR → v in
(24), the time-of-passage in the rest frame of the interferometer of the light signal in the
longitudinal arm is:

T ′
L =

D

cγv

[

1

1 − βv

+
1

1 + βv

]

=
2Dγv

c
. (39)

If the interferometer is rotated through 90◦ around a vertical axis the longitudinal and
transverse arms are exchanged resulting in a phase shift proportional to twice the time
difference T ′

L − T ′
T:

∆φMM
SR = 2[2πν(T ′

L − T ′
T)] =

8πD

λ0

(γv − 1) =
4πD

λ0

β2
v + O(β4

v). (Special relativity) (40)

cSee, for example, Chapters 1,2,5,7,9,10 of the book ‘Relativity in Rotating Frames’ [34] and references therein.
dThat is, by postulating any one of Eqs. (48), (49) and (50) the remaining two may be obtained by purely algebraic

manipulation.
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In Galilean relativity the phase shift is, at O(β2
v), a factor of two larger. For comparison

the phase shift in the Sagnac interferometer of Fig. 1 may be written as:

∆φS
SR =

32πL

λ0

β(L) + O(β(L)3). (41)

The β2
v dependence of ∆φMM

SR as compared to the β(L) dependence of ∆φS
SR explains why

the Sagnac experiment successfully detected an ‘aether wind’ on the surface of the Earth
while the MM experiment and later improved versions operating on the same principle
failed to do so. In the Michelson-Gale Sagnac experiment situated at latitude 41◦46′N the
value of β(L) for the East-West pointing arm of the interferometer due to the rotation
of the Earth was (0.34 km/s)/c = 1.1× 10−6. The corresponding Sagnac phase shift was
0.23 of a fringe width. Placing a Michelson interferometer with a similar light source and
dimensions 2L ≃ D = 0.5 km at the same latitude as the Michelson-Gale experiment
Eqs. (40) and (41) predict, for the ratio of phase shifts:

∆φMM
SR

∆φS
SR

=
β(L)

4
= 2.8 × 10−7 (42)

corresponding to a phase shift of 6.3 × 10−8 of a fringe in the Michelson interferometer.
In interpreting the results of the MM experiment and its successors it was usually

assumed that the ‘aether’ was at rest relative to the Solar System which corresponds
to a value of βv in (40) equal the the speed of rotation of the Earth around the Sun
of 29.8 km/s so that βv ≃ 10−4. This gives a phase shift in a Michelson interferometer
104 times larger than a value of βv corresponding to the rotation of the Earth about
its polar axis. The upper limit: βv ≃ 10−5 (v ≃ 10 km/s) obtained by the Kennedy-
Thorndike experiment [7], which has a sensitivity of about 10−5 of an interference fringe
width, was still some 30 times larger than the velocity of the surface of the Earth in
the Michelson-Gale experiment. At least another two orders of magnitude improvement
in the sensitivity of a Michelson interferometer would therefore be needed to detect the
speed of the ‘aether wind’ generated by the rotation of the Earth.

The space-time geometry for the passage of a light signal in the longitudinal arm of
a Michelson interferometer between the half-silvered-mirror HSM and the end mirror of
the arm, ML is shown in Fig. 6. The light signal travels at speed c in the laboratory
frame while the velocity v of the interferometer in the West-to-East direction, is due to
the rotation of the Earth, i.e. the interferometer is at rest on the surface of the Earth.
The light signal leaves HSM at laboratory time t = 0 and reaches ML when t = tL. The
geometry of Fig. 6b gives:

ctL = vtL + D(lab) (43)

where D(lab) is the separation of HSM and ML in the laboratory frame. The speed of
the light signal in the rest frame of the interferometer is given by Eq. (24) as:

(c+
r )′ = γv(c − v) (44)

so that the time-of-passage of the light signal in the rest frame of the interferometer, t′L,
is

t′L =
D

(c+
r )′

=
D

γv(c − v)
=

DtL
γvD(lab)

(45)

13



Figure 6: Space-time geometry of the passage of a light signal in the longitudinal arm of a Michelson
interferometer. The latter is at rest on the surface of the Earth with the arm directed in the West-
to-East direction. The laboratory frame is the ECI frame and the velocity v of the interferometer is
due to the rotation of the Earth. See text for discussion.
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where, in the last member, Eq. (43) is used, after transposition, to eliminate c − v.
Combining the time dilation relation

tL = γvt
′
L (46)

with (45) then shows that
D(lab) = D. (47)

There is no ‘length contraction’ effect.
In the conventional interpretation of the MM experiment the failure to observe any

phase shift between signals in the longitudinal and transverse arms is assumed to imply
that T ′

L = T ′
T. The space-time geometry of the laboratory frame gives a time-of-passage

of the light signal from HSM to ML and back, in this frame, of:

TL = D(lab)

[

1

c − v
+

1

c + v

]

=
2D(lab)

c(1 − β2
v)

. (48)

Now

T ′
T =

2D

c
(49)

and time dilation gives:
TL = γvT

′
L. (50)

Combining (48), (49) and (50), on the assumption T ′
L = T ′

T (no phase shift), gives

TL = γvT
′
L = γvT

′
T =

2γvD

c
=

2D(lab)

c(1 − β2
v)

(51)

from which follows:

D(lab) =
D

γv

(T ′
L = T ′

T). (52)

This is the ‘length contraction’ effect [44] which explains a null result for the MM ex-
periment in conventional Special relativity. As explained above, for consistency with the
observed Sagnac effect, a non-vanishing phase shift must exist in a MM-type experiment,
but, to date, no such experiment has had sufficient sensitivity to observe the phase shift.
For further critical discussion of the putative special relativistic ‘length contraction’ and
‘relativity of simultaneity’ effects see [36, 39, 40, 41] and references therein.

As described in Refs. [45, 46] corrections for the Sagnac effect are routine in the
operation of the Global Positioning System (GPS). The velocity of GPS microwave signals
in the rest frame of a GPS receiver are calculated according to the Galilean formula (1)
above. Similar corrections are applied in tests, using the GPS, of the isotropy of the
speed of light [47]. In this case, as also in the Michelson-Gale experiment, the ‘laboratory
frame’, in which the speed of light is assumed [45, 46] or measured [47] to be c, is the
Earth-Centered-Inertial (ECI) frame which is the co-moving inertial frame of the centroid
of the Earth with axes pointing to fixed directions on the celestial sphere. It is in this
frame that the Earth’s gravitational field is given by the Schwartschild metric [48, 49]
and which effectively contains the ‘aether’, relative to which, ‘winds’ were observed by
Sagnac, and Michelson and Gale. It is indeed a prediction of General relativity that, in
just this frame, the speed of light is (very nearly) equal to c. ‘Very nearly’ because of
the Shapiro delay [50] of light signals crossing the Earth’s gravitational field. For signals
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from the GPS satellites such delays are less than 200ps [45] and so give no perceptible
effect in GPS operation.

For hypothetical in vacuo light signals circumnavigating the Earth at the Equator at
constant distance R from the center of the Earth the velocity of light is given by the
Schwartschild metric equation:

0 = (dτ)2 =

(

1 +
2φE

c2

)

(dt)2 − R2dφ2

c2
(53)

where φE = −GME/R is the gravitational potential due to the Earth. Then the speed of
the light signals in the ECI frame is;

cE ≡ Rdφ

dt
=

(

1 +
φE

c2

)

c + O[(φE/c2)2] (54)

The values of the mass of the Earth, ME, and its equatorial radius, R, give φE/(c2) =
−0.694 × 10−9 so that

c − cE

c
= 6.94 × 10−10

The ‘Shapiro delay’ for such a light signal is then about 90ps for a round trip time of
2πR/cE = 134ms.

The existence of different ‘effective aethers’ around the Earth and the Sun in order to
explain experimental data on the propagation of microwaves near to the surface of the
Earth [45, 46, 51] and the Shapiro radar echo delay experiments for microwave signals
passing close to the Sun [50] was proposed by Su [52, 53] in the context of a classical
electromagnetic wave theory distinct from that given by Special relativity. However, as
pointed out above, the existence of such ‘effective aethers’ is a necessary consequence of
General relativity, so that no new classical theory of the type proposed by Su is required.

The Sagnac effect for neutrinos of the CERN CNGS beam [54] as detected in OPERA [55]
in the Gran Sasso Laboratory has recently been considered [56]. Neutrinos, with ener-
gies around 17 GeV, from decays of charged pions or kaons are directed in a roughly
South-Easterly direction through the crust of the Earth and are detected after a flight
distance of about 730 km in the underground detector OPERA. As for photons in the
Sagnac and Michelson-Gale experiments, the neutrinos are expected to have speed c in
the ECI frame. During the 2.4 ms time-of-flight of the neutrinos the OPERA detector
moves a distance 0.835 m [56] in an Easterly direction due to the rotation of the Earth.
This increases the time-of-flight of the neutrinos by 2.2 ns [56]. This implies, in turn,
that that the neutrinos have an average speed, in the co-moving inertial frame of OPERA
(in which the CERN-OPERA separation is constant), that is less than c by the fraction
9.2 × 10−7. Notice that if the CERN neutrino beam were instead directed in a South-
Westerly direction the measured speed of the neutrinos would be, by a similar fraction,
greater than c, so that, when the Sagnac effect is taken into account, speeds of particles
relative to detectors are not limited to be less than or equal to c. Making use of detailed
survey information on the positions of the neutrino source and the OPERA detector [57]
the angle, α, between the neutrino beam direction and the direction of motion of OPERA
in the ECI frame is found to be α = 37.8◦.

According to the conventional velocity transformation formulas of special relativity [2]
the velocity components of the neutrinos, parallel to (v‖), and perpendicular to (v⊥), the
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direction of motion of OPERA, in the co-moving inertial frame of the latter, when they
are assumed to have speed c in ECI frame, are:

v‖ = c

[

cos α − βO

1 − βO cos α

]

(55)

v⊥ = c

[

sin α

γO(1 − βO cos α)

]

(56)

where βO ≡ vO/c, γO ≡ 1/
√

1 − β2
O and vO = 323 m/s is the speed of OPERA in the

ECI frame. The speed, v, of the neutrinos in the OPERA frame is then given by:

v2 = v2
‖ + v2

⊥ = c2

[

(γ2
O − 1) cos2 α − 2βOγ2

O cos α + γ2
Oβ2

O + 1

γ2
O(1 − βO cos α)2

]

= c2

[

γ2
Oβ2

O cos2 α − 2βOγ2
O cos α + γ2

O

γ2
O(1 − βO cos α)2

]

= c2 (57)

(where the identity γ2
O ≡ γ2

Oβ2
O + 1 has been used) so that the Sagnac effect vanishes, in

contradiction with the prediction of Ref. [56].
The current OPERA measurement [58] of the neutrino time-of-flight gives, at 90%

confidence, a value of v such that:

−1.8 × 10−6 < (v − c)/c < 3.0 × 10−6

In order for the velocity measurement to be sensitive to the Sagnac effect: ∆c/c =
−9.2×10−7, at least an order of magnitude reduction in the systematic uncertainty of the
time-of-flight measurement (currently ≃ 3ns) is required. In contrast, the uncertainty of
20 cm in the flight distance given in [57] is about a factor of four less than the displacement
due to the Sagnac effect. Further discussion of measurements of the Sagnac effect in
existing and planned terrestrial long-baseline neutrino beams may be found in Ref. [59]

The final conclusions are that the ECI frame constitutes a physically-preferred ref-
erence system for light signals or neutrinos in the vicinity of the Earth and that the
Sagnac effect is not correctly described, either for light signals (photons) or neutrinos by
the velocity transformation formulas of conventional special relativity. There is clearly
an important mismatch between what is known and applied by engineers in the GPS
system [45, 51], and in practical applications of the Sagnac effect (for example fiber-optic
gyroscopes [13, 14, 15]) and the content of the scientific literature and text books on
Special relativity theory, that needs to be rectified.

17



Appendix

Figure 7: a) Laboratory frame configuration of the upper arm of the square Sagnac interferometer
shown in Fig. 1. The axes of the Cartesian coordinates x and y are fixed in the interferometer frame
as shown in Fig. 2b. The light signal at point Q, midway between the mirrors M2 and M3, is at the
point P at an earlier time, corresponding to rotation in the laboratory frame by an angle δ of the x
and y axes. b) Angles of the triangle PRS in terms of the angles δ and φ defined in a).

In Fig. 7. is shown the laboratory frame configuration when a co-rotating light signal
is at the point Q, midway between the mirrors M2 and M3 of Fig. 1 or 2. In the labora-
tory frame the signal follows a straight line path between the reflections at the mirrors.
Assuming that the source S in Fig. 1 is close to the HSM the light signals impact the
mirrors at a mean distance

√
2L from the axis of rotation, which is at the middle of the

square light path in Fig. 1. The point P on the light path, corresponding to the position
of the light signal at an earlier time, is specified by Cartesian coordinates x, y fixed in
the co-rotating frame of the interferometer, as shown in Fig. 2b. The x-coordinate origin
is midway between the mirrors M2 and M3. When the light signal is at P, the x-axis is
rotated by an angle δ relative to the X-axis, fixed in the laboratory frame, that is parallel
to the path of the light signal in this frame. The geometry of Fig. 7 gives the following
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relations:

∆t =
X + ∆X

c
=

δ

Ω
, (A.1)

X

D
= tan φ =

x

D + y
, (A.2)

y = ∆r cos φ, (A.3)

∆s = 2r cos(π/2 − δ/2) =
2D cos(π/2 − δ/2)

cos φ
(A.4)

where ∆t is the time-of-passage in the laboratory frame of the light signal between P and
Q. Application of the Sine Rule to the triangle PRS in Fig. 4b gives:

∆r

sin(φ + δ/2)
=

∆X

sin(π/2 + δ/2)
=

∆s

sin(π/2 − φ − δ)
. (A.5)

Combining (A.1), (A.2), (A.3) and the last member of (A.5) gives

δ

βD

= tan φ +
2 sin(π/2 − δ/2) sin(π/2 + δ/2)

cos φ sin(π/2 − φ − δ)

= tan φ +
δ

cos2 φ
+

δ2 tan φ

cos2 φ
+ O(δ3) (A.6)

where βD ≡ DΩ/c. Solving (A.6) for δ, by iteration, to successive orders in βD, gives:

δ1 = βD tan φ + O(β2
D), (A.7)

δ2 = βD tan φ +
β2

D tan φ

cos2 φ
+ O(β3

D), (A.8)

δ3 = βD tan φ +
β2

D tan φ

cos2 φ
+

β3
D tan φ

cos2 φ
(1 + 2 tan2 φ) + O(β4

D). (A.9)

Combining (A.3), (A.4) and (A.5) so as to eliminate ∆r and ∆s gives

y =
2D sin(φ + δ/2) sin δ/2

cos(φ + δ)

= D[δ tan φ +
δ2

2
sec2 φ] + O(δ3). (A.10)

The path of the light signal in the co-rotating frame is then given by (A.2), (A.7) and
(A.10) as

y1 =
βDx2

D
+ O(β2

D) (A.11)

which, at order βD, is a parabola. An iterative solution of (A.10) using (A.2) and (A.8)
gives, up to second order in βD:

y2 =
βDx2

D

[

1 − βD

2

(

3x2

D2
− 1

)]

+ O(β3
D). (A.12)

Associating P with the point of reflection of the light signal on the mirror M2, then
tan φ = 1 so that from (A.2) (see also Fig. 2):

x = x0 = D + y0 = L. (A.13)
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Setting φ = π/4 in (A.9) gives for the corresponding value of the angle δ:

δ0 = βD + 2β2
D + 4β3

D + O(β4
D) (A.14)

while setting φ = π/4 in the first member of (A.10) and retaining order δ3 terms gives

y0 = D

(

δ0 +
3δ2

0

2
+

41δ3
0

24

)

+ O(δ4
0). (A.15)

Combining (A.13)-(A.15) gives, after some algebraic manipulation, the relation between
D and L in terms of βD:

D = L

(

1 − βD − 5β2
D

2
− 127β3

D

24

)

+ O(β4
D) (A.16)

as well as the relation between βD and βL ≡ (LΩ)/c:

βD = βL − β2
L − 3β3

L

2
+ O(β4

L). (A.17)

The time-of-passage in the laboratory frame, T+, of the co-rotating light signal from
and back to the HSM is given by (A.1) as

T+ = 8
(D + ∆X0)

c
(A.18)

where

∆X0 =
D sin δ

cos φ cos(φ + δ)

∣

∣

∣

∣

φ=π

4

=
2D sin δ0

cos δ0 − sin δ0

= 2D

(

δ0 + δ2
0 +

4δ3
0

3

)

+ O(δ4
0). (A.19)

Combining (A.16)-(A.19) gives the final result for T+ in terms of the dimension L of the
interferometer and its angular velocity:

T+ =
8L

c

(

1 + βL +
β2

L

2
+

11β3
L

24

)

+ O(β4
L). (A.20)

Note that the time-of-passage at order β3
L is required for consistency, at this order, with

the relativistic time dilation correction (see the main text). For counter-rotating signals
the time-of-passage is given by setting βL to −βL in (A.20):

T− =
8L

c

(

1 − βL +
β2

L

2
− 11β3

L

24

)

+ O(β4
L). (A.21)

The Sagnac phase shift in Galilean Relativity (GR) is therefore:

∆φGR = 2πν(T+ − T−) =
8πΩA

λ0c

(

1 − 11β2
L

24

)

+ O(β5
L). (A.22)

This is Eq. (6) of the main text.
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Using (A.16) and (A.17) to write (A.12) in terms of L and βL leaves the form of the
equation unchanged:

y2 =
βLx2

L

[

1 − βL

2

(

3x2

L2
− 1

)]

+ O(β3
L) (A.23)

so that

y1 =
βLx2

L
+ O(β2

L). (A.24)

This is Eq. (7) of the main text.
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