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Abstract

It is demonstrated that the relativity of simultaneity and length contraction effects of special
relativity are artifacts of the use of different coordinate systems to specify the spatial positions
of separated physical objects in their common rest frame.

PACS 03.30.+p

In this letter, observation, in different inertial frames, of events lying on the world-

lines of physical objects are considered with particular attention to the exact operational
definitions of the symbols representing times (clock epochs) and spatial coordinates in

the Lorentz transformation equations. Two inertial frames S, S’ are considered where S’
moves with speed v along the the positive x-axis of S and the x, x′ axes are parallel [1].

Only objects, at rest in S’, lying on the x′ axis, are considered. Following Taylor and
Wheeler [2] it is assumed that both inertial frames are equipped with a dense network of

synchronised clocks all registering, at any instant, the same epoch: t in S and t′ in S’, so
that the time of an event at an arbitary position in either frame may be identified with

that registered by a spatially-adjacent clock. Events in S are denoted as (x,t), those in
S’ by (x′,t′).

The experiment to be considered is one in which an observer at rest in the frame S
compares the frame time, t, registered by the clocks at rest in S with that, t′, registered

by clocks at rest in S’, for events that lie on the worldlines of specific physical objects.
The free parameters defining the initial conditions of the experiment are the value of v,

the initial difference, t0, between the frame times t and t′ and the initial positions of the

objects in the frame S. The quantities to be calculated are (i) the relation between t′ and
t for arbitary values of t and (ii) the separation of the two objects in the frame S’ when

their separation in the frame S is defined. The formulas giving both of these relations
are found to be invariant with respect to the choice of the origins of coordinates in both

S and S’, i.e. to respect translational invariance.
The worldlines of an arbitary object, labelled i, at rest in S’, are, in the frames S’ and

S respectively:
x′

i
(t′

i
) = x′

i
(0), xi(ti) = v(ti − t0) + xi(t0). (1)

The values of the constants x′

i
(0), xi(t0) depend on the choice of coordinate origins in S

and S’, and that of t0 on the relative synchronisation of the clock arrays in S and S’. The
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time Lorentz transformation for events on the worldline of the object i is

t′

i
= γ

[

ti − t0 +
v(xi(ti) − xi(t0))

c2

]

(2)

where γ ≡ 1/
√

1 − β2, β ≡ v/c and c is the speed of light in free space. The standard time

transformation equation [1] t′

i
= γ(ti−vxi(ti)/c

2) is recovered on setting t0 = 0, xi(t0) = 0,
i.e. for a particular choice of the coordinate origin in S and of the relative synchronisation

of the frame times t and t′. As discussed below, (2) is obtained from the standard
transformation equation by making the coordinate replacement: xi(ti) → xi(ti) − xi(t0)

i.e. by making a different choice for the position of the origin of coordinates in S. Using

the worldline of i in S (the second equation in (1)) to eliminate the spatial coordinate
xi(ti) from (2) and rearranging, using the definition of γ, gives the time dilation (TD)

relation, that is the result (i) mentioned above:

ti − t0 = γt′

i
. (3)

Notice that, unlike the time transformation equation (2),the TD relation contains no spa-
tial coordinates, and so is independent of the value of the parameter xi(t0) that depends

on the choice of the origin of coordinates in S. The time dilation relation is therefore a
translational invariant. The physical meaning of the parameter t0 can be read off from

(3). When t = t0, then t′

i
= 0 which implies that the settings of the S-frame clocks are in

advance of the S’-frame ones by t0 units when t′

i
= 0.

Combining (3) with the worldline equation of object i in (1) gives:

xi(ti) − xi(t0) = βγct′

i
. (4)

Squaring both sides of (3) and (4), subtracting and making use of the identity: γ2−γ2β2 ≡
1 gives:

c2(t′

i
)2 = c2(ti − t0)

2 − [xi(ti) − xi(t0)]
2. (5)

This is the familiar hyperbolic curve on the ct versus x Minkowski plot [3] relating an

event with fixed time t′

i
in S’ to corresponding events (xi(ti), ti) in the frame S, for

arbitary values of the velocity parameter v. We are now in a position to investigate the

simultaneity properties in S and S’ of events on the world lines of two spatially-separated
objects labelled 1 and 2. Simultaneous events in the frame S’ on the worldlines of 1 and

2 such that t′

1
= t′

2
= t′ are considered and (5) and the worldline equations in S are used

to calculate the corresponding times in the frame S. For such events (5) gives:

c2(t′)2 = c2(t1 − t0)
2 − [x1(t1) − x1(t0)]

2 = c2(t2 − t0)
2 − [x2(t2) − x2(t0)]

2. (6)

The hyperbolas H1(t
′, x1, t1), H1(t

′, x2, t2) given by (6) for the objects 1 and 2 are plotted

in Fig.1 for the case t0 = 0 together with the world lines, in the frames S, of 1 and 2 for

β = 0.0, 0.5 and 0.75. The space time events in S corresponding to the fixed epoch, t′,
in S’ are given by the intersections of the worldlines with H1 and H2. Inspection of Fig.1

shows that the world lines of 1 and 2 with the same value of β intersect the hyperbolas
at the same value of t: t1 = t2 = t. Events which are simultaneous in S’ are therefore

also simultaneous in S —there is no ‘relativity of simultaneity’ (RS) effect.
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Figure 1: Minkowski space time plot of events (x, ct) in the frame S. The hyperbolae H1 and H2 are
the loci of events on the worldlines of objects 1 and 2 for a fixed value of t′ and arbitary values of
β = v/c. Also shown (arrowed lines) are the world lines of the objects for β = 0, 0.5 and 0.75. The
absence of any RS effect is manifest by the equality of the values of t given by the intersections of the
worldlines with the hyperbolas for the different values of β. The hyperbolas and worldlines of object
2 are obtained from those of object 1 by the transformations: x2 = x1 + L, t2 = t1 that manifest the
translational invariance of the space-time geometric effects shown in the figure.
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With a suitable choice of the origin of coordinates in S’a —which leaves invariant
all physical predictions— the worldline of the object i in the frame S’ can be written

x′

i
(t′

i
) = xi(t0), giving, for the objects 1 and 2 the worldlines:

x′

1
(t′

1
) = x1(t0), x1(t1) = v(t1 − t0) + x1(t0) (7)

x′

2
(t′

2
) = x2(t0), x2(t2) = v(t2 − t0) + x2(t0). (8)

It follows from these equations that:

L′ ≡ x′

2
(t′

2
) − x′

1
(t′

1
) = x2(t0) − x1(t0) = x2(t) − x1(t) ≡ L. (9)

for all values of t′

1
and t′

2
. The spatial separation of 1 and 2 is therefore the the same

in the frames S’ and S —there is no ‘length contraction’ (LC) effect. This is the result

(ii) mentioned above. Note that the relation (9) is invariant with respect to the choice
of coordinate systems in the frames S and S’, i.e. under the transformations x → x + X,

x′ → x′ + X ′ for arbitary values of X and X ′.
A physical illustration of the invariance of the length interval between two physical

objects, in different inertial frames, without consideration of specific coordinate systems,

or space-time transformation equations, is provided by the thought experiment shown
in Fig. 2. Two small objects O1 and O2 lying on the x-axis in the frame S are intially

aligned with two ‘marker objects’ M1 and M2, that have fixed positions in this frame.
The objects O1 and O2 then undergo simultaneous and equal acceleration programs

during which both move a distance d in the frame S, and after which they move with
the same constant velocity. Fig. 1a shows the experiment as viewed in the frame S and

Fig. 1b the experiment as viewed in the common comoving inertial frame S’ of O1 and
O2. The acceleration ceases at time t = tacc in S and at time t′ = t′

acc
in S’. The qualitaive

features of Fig. 1 are the same for any acceleration program, but for definitness the case
of ‘hyperbolic acceleration’ where where the velocity in the frame S is given, as a function

of t, by the relation

β(t) =
at√

c2 + a2t2
(10)

where a is a constant with dimensions of acceleration, is considered. Time integration of

the velocity and use of the TD dilation relation for the instantaneous velocity gives:

d =
c2

a





√

1 +

(

atacc

c

)

2

− 1



 =
c2

a

[

cosh

(

at′

acc

c

)

− 1

]

. (11)

Choosing parameters and units such that a = c = 1 and tacc =
√

3 = 1.732... gives d = 1
and t′

acc
= 1.317... . In Fig. 2 the invariant interval between O1 and O2 or M1 and M2 is

chosen to take the value L = 4. The Lorentz invariant character of the separation of the
pairs of objects —a necessary consequence of the identical and simultaneous accelerations

they undergo, and independent of both the acceleration program and of the form of the
space-time transformation equations— is evident from inspection of Fig. 2.

The erroneous derivations of the LC and RS effects to be found in textbooks are
now discussed. The typical derivation of LC as given by Landau and Lifshitz [4] is

aWith this choice the coordinate origins in S and S’ are aligned when t
′ = 0, as is also the case for the standard

transformation equation.
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Figure 2: A simple thought experiment demonstrating the Lorentz invariance of the spatial separations
of the pairs of objects O1 and O2 at rest in the frame S’ and M1 and M2 at rest in the frame S.
The objects O1 and O2 undergo an identical and simultaneous acceleration program in the frame S
as indicated by the short arrows; a), as viewed from the frame S, b), as viewed from the common
instantaneous comoving frame of O1 and O2. The upper figures show configurations shortly after
the start of the acceleration program at times δt � tacc and δt′ � t′

acc
. The lower figures show

configurations at the end of the acceleration programs at times tacc in S and t′

acc
in S’, when S’ is

an inertial frame. The manifest invariance of the spatial separations of O1 and O2 and M1 and M2
in both frames is a necessary consequence of the assumed equality of the acceleration undergone by
O1 and O2. It is independent both of the acceleration program and of the form of the space-time
transformation equations. See text for further discussion.
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considered but similar derivations are to be found in all books treating special relativity
theory from popular expositions [5] to advanced monographs [6]. The LC effect follows

immediately on subsituting different arbitary space time events in the standard space
Lorentz transformation equations b:

x′

i
= γ(xi − vti), i = 1, 2. (12)

On setting t1 = t2 = t in order to define a ‘length measurement’ at a fixed instant in the

frame S, subtracting the two equations in (12) gives:

x′

2
− x′

1
≡ L′ = γ(x2 − x1) ≡ γL (13)

from which it is concluded that the measured length in S is less than the distance between

the objects in the frame S’ by the factor 1/γ. This is the LC effect. In the calculation,
the objects on the worldlines of which the events are located are assumed to be at rest in

the frame S’. This means that the coordinates x′

1
and x′

2
are time-independent constants.

The worldlines of the corresponding objects in the frame S are then

x1 = vt1 + x′

1
/γ, x2 = vt2 + x′

2
/γ (14)

from which follows x1(t = 0) = x′

1
/γ, x2(t = 0) = x′

2
/γ. The initial conditions in the

S-frame worldline equation in Eq. (1) are therefore:

t0 = 0, x1(t0) = x′

1
/γ, x2(t0) = x′

2
/γ. (15)

However, as discussed above, the initial conditions of the problem are completly defined

by t0, x1(t0) and x2(t0). If the coordinates x1(t0) and x2(t0) are referred to a common
origin in S and x′

1
(0) and x′

2
(0) to a common origin in S’ then Eq. (9) gives:

x2(0) − x1(0) = L = x′

2
(0) − x′

1
(0) = (x′

2
− x′

1
)/γ. (16)

The last member of this equation implies that there is a distance δ between the origins

of the coordinate systems in S’ used to specify x′

2
and x′

1
such that x′

2
− x′

1
= L′ = L + δ,

which, for consistency with (16), requires that δ = (γ − 1)L and therefore that L′ = γL.
The coordinates x′

2
and x′

1
in Eq. (12) are therefore specified in different coordinate

systems, with origins separated by the distance (γ − 1)L. This is the origin of the LC
effect, not a genuine difference of measured length intervals in the two frames. It is a

consequence, as will be seen below, of neglect, in the standard Lorentz transformation
equations, of important additive constants that must be included in order to correctly

describe the initial conditions of the space-time experiment in which the length intervals
are measured.

The standard time Lorentz transformations corresponding to the space transforma-
tions in (12) are:

t′

i
= γ(ti − vxi/c

2), i = 1, 2. (17)

Using the worldine equations in (14) to eliminate x1 and x2 gives:

t′

1
=

t1

γ
− vx′

1

c2
, t′

2
=

t2

γ
− vx′

2

c2
(18)

bFor clarity, roman symbols are used for space and time coordinates and length intervals in the standard Lorentz
transformation equations, as derived by Einstein [1], where no additive constants specifying initial conditions are
included.
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to be compared with the time dilation relation (3) with t0 = 0, which is ti = γt′

i
. The

equations (18) yield the absurd predictions that the relation between the times t′ and t

on the world lines of the objects 1 and 2 depends on the values of x′

1
and x′

2
respectively,

i.e. on the (arbitary) choice of the origin of spatial coordinates used to specify say x′

1
in

the frame S’ ! Setting t1 = t2 and subtracting the first equation in (18) from the second
yields the RS prediction:

t′

2
− t′

1
= −v(x′

2
− x′

1
)

c2
= −vL′

c2
= −γvL

c2
(t1 = t2) (19)

since t′

1
6= t′

2
when t1 = t2.

The transformation equations for space-time coordinates in (12) and (17) can be com-
bined to give the transformation equations for space and time intervals that are indepen-

dent of the choice of coordinate origins in S and S’ :

∆x′ = γ(∆x − v∆t), ∆t′ = γ(∆t − v∆x/c2) (20)

where ∆x′ ≡ x′

2
− x′

1
etc, which yield the space-like invariant interval relations:

(∆s)2 = (∆x′)2 − c2(∆t′)2 = (L′)2 − c2(∆t′)2 = (∆x)2 − c2(∆t)2 > 0. (21)

Setting ∆x = L, when ∆t = 0 and ∆t′ = −γvL/c2, from (19), gives, on eliminating ∆t′

from (21):

L2 = (L′)2 − γ2β2L2 → (L′)2 = (1 + γ2β2)L2 → L = L′/γ. (22)

This calculation demonstrates the correlated nature of the LC and RS effects that follow

from the interval transformation equations in (20). It is claimed, in many text books,
that the existence of these effects can be deduced from simple inspection of the invariant

interval relation (21). On the hypothesis that frames exist where ∆t = 0 and ∆t′ 6= 0
it is obvious from (21) that, for such frames, L 6= L′. In fact, following Langevin [7], a

space-like interval may be defined as one in which a frame exists where ∆t = 0 but none
with ∆x = 0; a time-like interval is defined as one in which a frame exists where ∆x = 0,

but none with ∆t = 0. The space-like or time-like character of the interval between any
two events is then a Lorentz-invariant property. However, the apparent symmetry here

between space and time [8] is broken. For event pairs with a time-like interval, frames
always do exist in which either ∆x = 0 or ∆x 6= 0, whereas due to the universal (spatial

coordinate independent) time dilation relation (3) if a frame exists for which ∆t vanishes

it must vanish for all inertial frames. This is quite clear from inspection of Fig. 1. There
are therefore two distinct categories of event pairs with space-like intervals, those for

which ∆t vanishes in all inertial frames and those in which ∆t 6= 0 in all inertial frames.
Inspection of the standard transformation equations in (12) and (17) shows that when

ti = 0 and xi = 0 then also t′

i
= 0 and x′

i
= 0. The equations then describe events on

the worldline of an object which is at the origin, in both S and S’, when t = t′ = 0. This

implies also that t0 = 0 so that the arrays of clocks in S and S’ are mutually synchronised
when the coordinate origins of S and S’ are aligned. In order to now describe the worldine

of an object not situated at the coordinate orgin of S’ when the clock arrays have the
same mutual synchronisation as above, the transformation equations must be modified.
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Making use of the freedom of choice of the coordinate origins, all physical predictions
must be unchanged under the coordinate transformations:

xi → xi − xi(0), x′

i
→ x′

i
− x′

i
(0), ti → ti, t′

i
→ t′

i
(23)

for arbitary values of the constants xi(0), x′

i
(0). The freedom of choice of the coordinate

origin in S’ allows the further choice: x′

i
(0) = xi(0). This implies that, as in the standard

Lorentz transformation, the coordinate origins in S and S’ are aligned when t = t′ =
0. The transformation equations of events on the worldine of an object at an arbitary

position in the frame S’ are then:

x′

i
(t′

i
) − xi(0) = γ[xi(ti) − xi(0) − vti] = 0, (24)

t′

i
= γ[ti − v(xi(ti) − xi(0))/c2]. (25)

Note that the space transformation is equivalent to the worldline equations in (1) with

t0 = 0 and a particular choice of coordinate origin in S’, and the time transformation
equation is the same as Eq. (2) with t0 = 0. When ti = 0 then t′

i
= 0, independently

of the value of xi(0), i.e. independently of the fixed position of the object in the frame

S’. The standard Lorentz transformations are recovered on setting xi(0) = 0. As in the
derivation of Eq. (3), elimination of xi(ti) from (25), using the last member of (24), gives

a spatial-coordinate independent TD relation: ti = γt′

i
(no RS), and the relation L′ = L

(see Eq. (9)) holds —no LC.

A ‘space-like invariant interval relation’ similar to (21) may be derived from (24) and
(25):

(∆s)2 = (∆x′)2 − c2(∆t′)2 = (∆x)2 − c2(∆t)2 > 0 (26)

where

∆x′ ≡ x′

2
(t′

2
) − x2(0) − x′

1
(t′

1
) + x1(0) = 0, (27)

∆t′ ≡ t′

2
− t′

1
, (28)

∆x ≡ x2(t2) − x1(t1) − (x2(0) − x1(0)) = x2(t2) − x1(t1) − L, (29)

∆t ≡ t2 − t1. (30)

Setting t2 equal to t1 gives ∆t = 0 and ∆x = 0. Since ∆x′ = 0 at all times(Eq. (27)),
(26) then gives ∆t′ = 0, i.e. t′

2
= t′

1
— no RS and, unlike (21), no prediction of LC.

To compare the generalised transformation equations of (24) and (25) with the stan-
dard ones of Eqs. (12) and (17) it is convenient to write the former as (dropping explicit

time arguments)

x′

i
= γ[xi − vti] + Xi, (31)

t′

i
= γ[ti − vxi/c

2] + Ti (32)

so that the generalised transformation equations differ from the standard ones by the
inclusion of the additive constants Xi and Ti on their right hand sides where:

Xi ≡ xi(0)(1 − γ), (33)

Ti ≡ γvxi(0)/c2. (34)
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Comparison of (31) and (32) with the standard transformation equations (12) and (17)
further elucidates the origin of the spurious RS and LC effects which are derived from the

latter equations. On the assumption that x1 and x2 are specified in the same coordinate
system in the frame S and that t1 and t2 are measured by the same network of synchronised

clocks in the frame S, the space and time coordinates in the generalised and standard
transformation equations are related as follows:

xi = xi, ti = ti, x′

i
= x′

i
+ Xi, t′

i
= t′

i
+ Ti. (35)

Thus the coordinate systems in which x′

i
and t′

i
are defined have coordinate origins dis-

placed by distances Xi and Ti respectively compared to those in which x′

i
and t′

i
are

defined. It follows from (33), (34) and (35), that

x′

2
−x′

1
= L = x′

2
−x′

1
+X2−X1 = x′

2
−x′

1
+(x2(0)−x1(0))(1−γ) = x′

2
−x′

1
+L(1−γ) (36)

so that
x′

2
− x′

1
= L′ = γL. (37)

Also

t′

2
− t′

1
= t′

2
− t′

1
+ T2 − T1 = t′

2
− t′

1
+

γv(x2(0) − x1(0))

c2
= t′

2
− t′

1
+

v(x′

2
− x′

1
)

c2
(38)

where, in the last member,(9) and (37) have been used. For simultaneous events in the

frame S’, t′

2
= t′

1
, (38) gives:

t′

2
− t′

1
= −v(x′

2
− x′

1
)

c2
(t′

2
= t′

1
) (39)

which is just the RS effect of Eq. (19). The origin of this effect and of the correlated LC

effect of (37) is then seen to be, as previously pointed out, and now shown explicitly in
(35), the use of different i-dependent coordinate systems in the frame S’ to specify the

events (x′

i
,t′

i
).

The necessity to include the additional constants Xi and Ti in the standard Lorentz

transformation equations, in order to correctly describe events on the worldlines of objects
at different positions, was clearly stated by Einstein in the originsl special relativity

paper [1] just after the derivation of the standard Lorentz transformation equations:
‘Macht man über die Anfanslage des bewegten Systems und über den Nullpunkt von τ

keinerlei Voraussetzung, so ist auf den rechten Seiten dieser Gleichungen je eine additive

Konstante zuzufügen’
or, in English:

‘If no assumption whatever be made as to the initial position of the moving system
and as to the zero point of τ an additive constant is to be placed on the right side of

these equations’
The quantity τ is t′ in the notation of the present paper.

The arguments presented above suggest that all text books treating special relativity
are in error when presenting ‘relativity of simultaneity’ and ‘length contraction’ as bona

fide physical effects and should be rewritten.
Unlike for the case of time dilation, no experiments sensitive to the existence of pu-

tative ‘relativity of simultaneity’ or ‘length contraction’ effects have been performed to
date [9].
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