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Abstract

Space-time intervals corresponding to different events on the worldline of any ponderable
object (for example a clock) are time-like. In consequence, in the analysis of any space-time
experiment involving clocks only the region for c∆t ≥ 0 between the line ∆x = 0 and the light
cone projection c∆t = ∆x of the c∆t versus ∆x Minkowski plot is physically relevant. This
breaks the manifest space-time symmetry of the plot. A further consequence is the unphysical
nature of the ‘relativity of simultaneity’ and ‘length contraction’ effects of conventional special
relativity theory. The only modification of space-time transformation laws in passing from
Galilean to special relativity is then the replacement of universal Newtonian time by a universal
(position independent) time dilation effect for moving clocks.

PACS 03.30.+p

The concept of spontaneously broken symmetry is a ubiquitous one in modern physics.
Originating in solid-state theory [1, 2], it is the basis of the Higgs mechanism of the
standard model of particle physics [3]. As exemplified by the behaviour of a ferromagnet,
spontaneous symmetry breaking occurs when the fundamental laws of some physical phe-
nomenon respect a certain symmetry (rotational invariance in the case of a ferromagnet)
which is broken in an actual physical realisation of the phenomenon. The fundamen-
tal laws are encapsulated in a Hamiltonian in non relativistic quantum mechanics, by
a Lagrangian in relativistic quantum field theory, and by differential equations, such as
Newton’s Second Law of mechanics, or Maxwell’s equations, in classical physics.

The fundamental laws of special relativity theory (SRT) are also encapsulated in
differential equations, the Lorentz transformations (LT) for space and time intervals:

∆x′ = γ(∆x − β∆x0), (1)

∆(x0)′ = γ(∆x0 − β∆x) (2)

where x0 ≡ ct, (x0)′ ≡ ct′, ∆x ≡ x1 − x2 etc, β ≡ v/c, γ ≡ 1/
√

1 − β2 and c is the speed
of light in free space. The parallel x and x′ coordinate axes are defined in the inertial
frames S and S’ respectively. The frame S’ moves with speed v in the direction of the
positive x-axis in S. Without any loss of generality, only points lying on the x,x′ axes are
considered in the following. The epochs t,t′ are those recorded by similar clocks at rest
in S,S’ respectively.

The transformation equations (1) and (2) respect spatial and temporal translational
invariance, that is they are unchanged by the replacements:

x → x + X, t → t + T
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where X and T are arbitary constants. They also remain invariant under the operation
of space-time exchange (STE):

x ↔ x0, x′ ↔ (x0)′

which exchanges equations (1) and (2). The STE invariance concept:
The equations describing the laws of physics are invariant with respect

to the exchange of space and time coordinates, or, more generally to the

exchange of the spatial and temporal components of four vectors.

was introduced in Ref. [4]. A corollary is the independence of physical predictions of
any theory to the choice of metric (space-like or time-like) for four-vector products. As
shown in Ref. [4] the postulate of STE invariance, together with the weak postulates of
spatial homogeneity [5, 6, 7] or single-valuedness [8] is sufficient to derive the space-time
LT (1) and (2). Another application of STE invariance is the derivation [4] of the non-
homogeneous electrodynamical (Ampère’s Law) and magnetodynamical (Faraday’s Law
of Induction) Maxwell equations from, respectively, the electrostatic and magnetostatic
Gauss laws.

Figure 1: Minkowski ∆x0 versus ∆x plot. The STE conjugate worldlines ∆x = 0.5∆x0,∆x0 = 0.5∆x
intersect the hyperbolae H0

+, H+ corresponding, respectively, to time-like and space-like invariant
interval relations, in the points A,B. See text for discussion.

The transformation equations (1) and (2) may be combined to define invariant interval

2



equations as introduced by Minkowski [9]a and discussed at length by Langevin [11, 12]:

(∆x0)2 − (∆x)2 = [∆(x0)′]2 − (∆x′)2 ≡ (∆s0)2 Timelike interval ∆x0 > ∆x, (3)

(∆x)2 − (∆x0)2 = (∆x′)2 − [∆(x0)′]2 ≡ (∆s)2 Spacelike interval ∆x > ∆x0, (4)

(∆s0)2 = −(∆s)2. (5)

For a fixed value of ∆s0 = i∆s the intervals ∆x0(β), ∆x(β) for different values of β lie
along four distinct hyperbolae H+, H−, H0

+ and H0
−

in the ∆x0 versus ∆x Minkowski plot,
as shown in Fig. 1. The equations of the hyperbolae are:

H+ : ∆x0 = ±
√

(∆x)2 − (∆s)2, ∆x ≥ ∆s, (6)

H− : ∆x0 = ±
√

(∆x)2 − (∆s)2, ∆x ≤ −∆s, (7)

H0

+ : ∆x = ±
√

(∆x0)2 − (∆s0)2, ∆x0 ≥ ∆s0, (8)

H0

−
: ∆x = ±

√

(∆x0)2 − (∆s0)2, ∆x0 ≤ −∆s0. (9)

Since the physical significance of Fig. 1 does not depend on the direction in which the
∆x and ∆x0 axes are drawn, the figure is invariant under the STE operation. In fact,
the sucessive operations STE, anticlockwise rotation by 90◦ in the ∆x∆x0 plane and
rotation by 180◦ about the resulting ∆x0 axis leave Fig. 1 unchanged. As will now be
demonstrated, this manifest STE invariance is broken when the physical significance of
various projection operators applied to the LT (1) and (2) is considered.

Setting ∆x′ = 0 in Eq. (1) means consideration of events on the world line of a fixed
point in the frame S’. The corresponding differental worldline equation in the frame S is,
from Eq. (1), ∆x = β∆x0. For β = 0.5 this straight line in Fig. 1 intersects the hyperbola
H0

+ at the point A. Using the worldline equation in S to eliminate ∆x in Eq. (2) yields
the time dilation relation ∆x0 = γ∆(x0)′ which is the experimentally-confirmed [13, 14]
prediction that clocks at rest in the frame S’ are seen to run slow relative to clocks at
rest in the frame S.

The STE conjugate projection ∆(x0)′ = 0, i.e. simultaneous events in the frame S’,
gives from Eq. (2) the relation ∆x = ∆x0/β corresponding to a superlumial worldline in
the frame S that intersects the hyperbola H+ in Fig. 1 at the point B for β = 0.5. Since
for ∆x > 0 and β > 0 then also ∆x0 > 0, there is here a relativity of simultaneity effect
because events simultaneous in S’ (∆(x0)′ = 0) are not so in the frame S (∆x0 > 0).
Using the worldline equation to eliminate ∆x0 in Eq. (1) gives ∆x = γ∆x′. This is the
‘space dilation’ effect (the STE conjugate of time dilation) associated with the projection
∆(x0)′ = 0 as previously pointed out in Ref. [15]. However, any object at rest in the frame
S’ must have ∆x′ = 0. So it is impossible that the worldline of any physical clock at rest
in S’ can intersect the hyperbola H+. The mathematical projection ∆(x0)′ = 0 with its
associated relativity of simultaneity and ‘space dilation’ effects is therefore unphysical.
The initial conditions of an experiment where a clock a rest in S’ is compared with one
at rest in S: β > 0, ∆x′ = 0 therefore restrict the physical region of the Minkowski plot
in Fig. 1 to one eighth of its total area —that between the lightcone LC+ (the asymptote
of the hyperbola H0

+) and the positive ∆x0 axis. The symmetry of the plot is therefore
clearly broken by the initial conditions of any experiment in which the time dilation effect
is observed.

aSee Ref. [10] for a discussion of the consequences of a sign error in drawing the x
′ and t

′ axes on the original
space-time plot of Ref. [9] as well as in a wide subsequent literature.
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Figure 2: Minkowski ct versus x plot for clocks C1 and C2 at rest in the frame S’ with respective
worldlines: x1 = βct1 and x2 = βct2 + L in the frame S. The hyperbolae H1 and H2 are the loci of
points (x,ct) for a fixed value of t′ and different positive values of β. O1A1(0.5), O2A2(0.5): worldlines
in S of C1 and C2 for β = 0.5. O1A1(0), O2A2(0): similar wordlines for β = 0. The absence of any
relativity of simultaneity or length contraction effects is evident from inspection of this figure.
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Consider now two clocks C1 and C2 at rest in S’ with worldlines in the frame S:
x1(β) = βct1 and x2(β) = βct2 + L. Integrating the differential time dilation relation
dt = γdt′ gives time dilation relations t1 = γt′1, t2 = γt′2 for C1, C2. Use of the identity
γ2(1 − β2) ≡ 1 then yields the relations:

c2(t1)
2 − x1(β)2 = c2(t′1)

2, (10)

c2(t2)
2 − (x2(β) − L)2 = c2(t′2)

2. (11)

The corresponding hyperbolae H1 and H2 on a ct versus x plot are shown in Fig. 2 for
t′1 = t′2 = t′, together with the worldlines of C1 and C2 for β = 0.5 and β = 0. It follows
from the time dilation relations or inspection of Fig. 2 that t1 = t2 when t′1 = t′2 —there is
no relativity of simultaneity effect in observations of the clocks C1 and C2. The worldline
equations when t1 = t2 show that, for all values of β:

∆x(β) ≡ x2(β) − x1(β) = L. (12)

A special case of Eq. (12) is

x2(0) − x1(0) = x′

2 − x′

1 ≡ ∆x′ = x2(β) − x1(β) ≡ ∆x(β) = L (13)

so, as is also evident from inspection of Fig. 2, there is no length contraction effect.
The interval LT (1) and (2) for the clock C2 are:

x′

2 − L = γ(x2 − L − βct2) = 0, (14)

ct′2 = γ[ct2 − β(x2 − L)]. (15)

The corresponding LT for clock C1 are given by setting L = 0 in these equations.
It is now instructive to compare (14) and (15) with the conventional space-time LT [21]:

x′ = γ(x − vt), (16)

t′ = γ
(

t −
vx

c2

)

(17)

which has hitherto been universally interpreted as the transformation giving the observed
event in the frame S’: (x′,t′) corresponding to an event(x,t) observed in the frame S, for
arbitary values of x′,t′ or x,t. However, since the coordinate x′ is, by definition, that of
a fixed point in the frame S’ it must be independent of time. In contrast, the right side
of Eq. (16) is in general a function of the time t which, for any value of x, vanishes when
t = x/v. It then necessarily follows that Eq. (16) can hold only if both x′ = 0 and x = vt,
in which case (16) and (17) become identical to (14) and (15) with L = 0, i.e. the correct
interval LT for the clock C1 discussed above.

The spurious ‘length contraction’ and ‘relativity of simultaneity’ effects derived from
(16) and (17), discussed in detail elesewhere [16, 17, 18, 19], arise from the failure to
respect the above-mentioned condition for the validity of Eq. (16). The LT (16) and (17)
are instead assumed to hold for arbitary values of x′, so they become, on considering two
independent events:

x′

1 = γ(x1 − vt1), x′

2 = γ(x2 − vt2), (18)

t′1 = γ
(

t1 −
vx1

c2

)

, t′2 = γ
(

t2 −
vx2

c2

)

. (19)
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On setting t1 = t2 (∆t = 0, length measurement in the frame S) Eqs. (18) give:

x′

2 − x′

1 ≡ ∆x′ = γ(x2 − x1) ≡ γ∆x (length contraction)

while Eqs. (19) give:

t′2 − t′1 ≡ ∆t′ = −
γv(x2 − x1)

c2
= −

γ∆x′

c2
6= 0 (relativity of simultaneity).

These unphysical predictions therefore arise from a failure to sufficiently consider the
mathematical constraints arising from the operational meanings of the coordinate symbols
in the LT.

The erroneous (when x′ 6= 0) LT equations (16) and (17) differ from the correct ones
(14) and (15) by the omission of certain additive constants X and T on the right side of
(16) and (17) respectively. As discussed in Ref. [20] the necessity to include such constants
to correctly describe synchronised clocks at different spatial positions was clearly pointed
out by Einstein in Ref. [21] but, to the present author’s best knowledge, was never done,
either by him or any subsequent worker, for the entire duration of the 20th Century!

The physical meaning of Eqs. (14) and (15) is the same as that of the more transparent
equations:

x′

2 = L, x2 = vt2 + L, (20)

t2 = γt′2. (21)

The first and second equations in (20) are simply the worldline equations of C2 in the
frames S’, S respectively and are the same as in Galilean relativity. The only modification
of space-time transformation equations in passing from Galilean to special relativity is
the replacement of Newtonian universal time: T = t = t′ by the position-independent
time dilation relation (21).

Note that, as is also evident by inspection of Fig. 2, the worldlines of C1 and C2 in
the frames S’, S respectively, respect, at any instant: t = t1 = t2 translational invariance:
x′

2 = x′

1 + L, x2 = x1 + L, as do the interval transformations for events on the worldlines
of the clocks Ci, i = 1, 2:

∆x′

i
= 0, ∆xi = β∆x0

i
, (22)

∆x0

i
= γ∆(x0

i
)′. (23)

Comparing Eqs. (22) and (23) with the general interval Lorentz transformations (1) and
(2) the breakdown of STE invariance in space-time experiments involving such physical
clocks is manifest.
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