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Abstract

Assuming the existence of an inertial frame, S, in which light propagates isotrop-
ically with a uniform speed, it is shown how measurements of time intervals between
the epochs of transmission and reception of light signals by a single uniformly moving
clock can be used to measure the velocity of the clock in S. Methods to synchronise
two or more such moving clocks both with and without the observation of light
signals are described. It is also shown that the Galilean definition of velocity and
relativistic time dilation are incompatible with the Einstein postulate, and the pre-
diction of Maxwell’s electromagnetic theory of light, that the speed of light is the
same in all inertial frames. Flaws in Einstein’s arguments claiming consistency of
predictions of the space-time Lorentz transformations with light speed frame inde-
pendence are pointed out. The ‘Conventionality of Clock Synchronisation’ concept
and Poincaré’s related assertion of the impossiblity of internal detection of uni-
form translational motion are shown to be untenable. A consistent description of
all known optical phenomena is given by identifying light with massless particles
obeying the laws of relativistic kinematics —the ‘light quanta’, now called photons,
discovered by Einstein in 1905.
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1 Introduction

The space-time Lorentz Transformations (LT) were originally obtained by Lorentz [1]
Larmor [2, 3] and Poincaré [4] as those that left the form of Maxwell’s electromagntic
field equations invariant when transformed from a frame in which a putative ‘luminferous
aether’ was at rest, into any frame (an ‘inertial’ frame) moving uniformly with respect to
the aether frame. The same demonstration is found in Einstein’s original special relativity
paper [5] except that the aether frame is replaced by a frame where, by hypothesis, light
propagates with uniform speed c, independantly of the velocity of its source —Einstein’s
‘stationary’ frame.

Since Maxwell’s equations in free space lead to the prediction of ‘electromagnetic
waves’ moving at a definite speed c it is concluded that, on identifying light with these
electromagnetic waves, that the speed of light must be the same in the aether frame,
in Einstein’s stationary frame and in an arbitary inertial frame. This prediction from
classical electromagnetic theory of the constancy of the speed of light was promoted by
Einstein to a postulate (the second postulate of the special theory of relativity) and
employed in Ref. [5] to derive, from first principles, the LT.

Perhaps surprisingly it will be demonstrated in the present paper that such frame-
independence of the speed of light is incompatible with constraints of space-time geom-
etry in Einstein’s stationary frame and the existence of the experimentally-verified time
dilation (TD) effect for a moving clock, as derived by Einstein from the LT, in Ref. [5].

In Ref. [5] a method was proposed to synchronise two spatially-separated clocks A
and B, by exchange of light signals between them. If the clocks are at rest in a frame in
which the speed of light is isotropic, one method to carry out the procedure suggested
by Einstein is as follows. Initially both clocks are stopped and their epochs1 set to zero.
When the light signal is transmitted from A, this clock is started. When the signal arrives
at B, where it is promptly reflected back towards A, clock B is started. The signal arrives
back at A at A epoch tA. Since the clock B will be slow relative to A by the time interval
for the light to pass from A to B (or from B to A), which is tA/2, clock B is synchronised
with A by adding tA/2 to its epoch. If it is indeed true that the speed of light is the same
in all inertial frames, (as suggested by the application of the LT to Maxwell’s Equations)
this procedure would be a valid one in all inertial frames —and not subject to any kind
of ambiguity. On the other hand if the to-be-synchronised clocks were at rest in a frame
in which light speed is anisotropic (Einstein himself considers just such a case in the
section of Ref. [5] following the one in which his light signal synchronisation procedure
is described; this will be discussed in Section 8 below) then allowance would have to be
made for the anisotropy in order to use exchange of light signals to synchronise the clocks.
Just this point was made by Poincaré [6]:

But this method of operation (Einstein’s procedure) assumes that light takes

the same time to travel from A to B and to return from B to A. This is true

if the observers are motionless, but no longer true if they are involved in

1An ‘epoch’, t, is the number registered by a clock at any instant. Time intervals are defined as the
difference between two epochs: ∆t ≡ t2 − t1, t2 > t1.
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a common transposition, because in this case A, for instance will be meeting

the light that comes from B while B is retreating from the light that comes

from A.

In order to correctly synchronise the clocks therefore, proper account must be taken
of the light speed anisotropy. Just this is what will be done in the calculations presented
below in the present paper. Instead of adding tA/2 to the epoch of clock B it will be
necessary to add ǫtA where 0 < ǫ < 1 and the value of ǫ is calculated from the known
light speed anisotopy in the proper frame of the clocks A and B. In spite of this quite
evident generalisation of his light signal exchange synchronisation procedure Einstein
makes in Ref. [5] the following assertion before describing the procedure:

We have not defined a ‘‘common time’’ for A and B, for the latter cannot

be defined at all unless we establish by definition that the ‘‘time’’ required

by light to travel from A to B equals the ‘‘time’’ it requires to travel from

B to A.(Einstein’s italics)

Just the contrary of this assertion will be demonstrated by the calculations presented
below in the present paper.

Following Reichenbach [7] many authors, particularly of philosophical literature, have
argued that the parameter ǫ introduced above to correct for the effect of light speed
anisotropy has no physical significance, being of a purely ‘conventional’ nature. This
claim will be examined in Section 8 below in the light of the calculations presented in the
previous sections.

Another issue addressed in the present paper is Poincaré’s formulation of the special
relativity principle as a statement (a generalisation of ‘Galileo’s ship’ [8]) of the impossi-
blity by means of any ‘internal’ measurements whatever to detect uniform translational
motion [9]:

The principle of relativity according to which the laws of physical

phenomena should be the same whether for an observer fixed, or for an observer

carried along in a uniform movement of translation; so that we have not and

could not have any means of discovering whether or not we are carried along

in such motion.

Counter examples to this statement of the special relativity principle are given by the
calculations presented in Sections 3, 4 and 6 below.

This paper is organised as follows: In the next section, time intervals for exchange
of light signals between two clocks at rest in an arbitary inertial frame are derived. The
calculation is based on three postulates that are also given in Ref. [5]. In the following
Sections 3 and 4, the results obtained in Section 2 are used, firstly, to determine the
relative motion of the inertial frames S and S’, given isotropy of light speed in the frame
S, and, secondly, to synchronise two spatially-separated clocks at rest in the frame S’. This
is done at order v/c in Section 3 and exactly (to all orders in v/c) in Section 4. In Section
5 various methods of synchronising, without the use of light signals, spatially-separated
clocks at rest in an arbitary inertial frame are described. Section 6 describes a method
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to detect the motion of an inertial frame by observation of time intervals recorded by
clocks moving in a known manner relative to the frame, as well as another method to
synchronise clocks at rest in the frame. In Section 7 the general problem of the existence
of preferred frames for particular physical phenomena such as particle propagation or
observations of clocks, is considered, with particular reference to experiments carried out
in the vicinity of the Earth. In Section 8 the discrepancies between the results obtained in
the present paper and standard special relativity theory are discussed. Particular emphasis
is placed on comparison with Ref. [5] where identical initial postulates to those employed
in the present paper lead to very different predictions. Section 9 gives conclusions. The
Appendix describes a method to measure the parameters D and θ specifying the separation
and orientation, in the frame S, of the to-be-synchronised clocks in uniform motion in this
frame.

2 Exchange of light signals between moving clocks

The calculations of the present section are based on three postulates:

(i) The existence of an inertial frame S in which light propagates isotropically in free
space with speed c.

(ii) The Galilean definition of uniform velocity in the frame S:

velocity ≡ displacement of object

elapsed time
≡ s

∆t
.

The time interval ∆t is recorded by a clock at rest in S registering an epoch t.

(iii) The validity of the interval Lorentz transformations:

∆x′ = γ(∆x − v∆t) = 0, (2.1)

∆y′ = ∆y = 0, (2.2)

∆z′ = ∆z = 0, (2.3)

∆t′ = γ(∆t − v∆x

c2
) (2.4)

where γ ≡ 1/
√

1 − (v/c)2, relating the time interval ∆t to that ∆t′ recorded by
a clock at rest in the frame S’ that moves with speed v along the common x,x′

coordinate axis of the frames. Intervals along the world line of any clock a rest in S’
respect the conditions ∆x′ = ∆y′ = ∆z′ = 0 in S’ and ∆x = v∆t, ∆y = ∆z = 0 in
S. Postulates (i) and (ii) were explicitly given in Einstein’s seminal special relativity
paper [5] where the space-time LT (2.1)-(2.4) were also derived.

As shown in Fig. 1, two clocks, C’0 and C’1 at rest in the frame S’, are separated by a
distance D in the frame S and the line segment C’0 C’1 is at an angle θ relative to the
x-axis in the same frame. When the clock C’0 , placed at the origin of coordinates in the
frame S’, is aligned with the origin O of the frame S, a light signal is transmitted from
C’0 and arrives at C’1 after the time interval ∆t+ in the frame S. The path length of the
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Figure 1: Space time geometry in the frame S where light propagates isotropically with

speed c. The clocks C’0 and C’1 are at rest in the frame S’ that moves with speed v
relative to S. A light signal transmitted from the clock C’0 is received by the clock C’1 after

the time interval ∆t+, during which period the clock C’0 moves a distance v∆t+. See text

for discussion.
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signal in the frame S is, by postulates (i) and (ii), s+ = c∆t+, while the definition of the
frame S’ and postulate (ii) require that the displacement OC’0 of C’0 in Fig. 1 during the
time interval ∆t+ is v∆t+. The Theorem of Pythagoras applied to the triangle O C’1 N
in Fig. 1 gives:

s+ = c∆t+ = Dγ2[
√

1 − β2 sin2 θ + β cos θ] (2.5)

where β ≡ v/c. The corresponding time interval, ∆t−, of a signal transmitted by C’1 and
received by C’0 is given by setting β → −β in Eq. (2.3):

s− = c∆t− = Dγ2[
√

1 − β2 sin2 θ − β cos θ]. (2.6)

The time interval for a signal transmitted from C’0 to C’1 and promptly reflected back to
C’0 , ∆t010, is, from (2.5) and (2.6):

∆t010 = ∆t+ + ∆t− =
2Dγ2

c

√

1 − β2 sin2 θ. (2.7)

Also
∆t101 = ∆t− + ∆t+ = ∆t010. (2.8)

Only motion in the frame S has been considered in deriving Eqs. (2.5)-(2.8) and all
time intervals are those recorded by a single clock at rest in the frame S. To find the
corresponding time intervals in the frame S’, i.e. those actually recorded by the clocks
C’0 and C’1 , during the passage of the light signal shown in Fig. 1 postulate (iii) is used.
Substituting the interval world line equation ∆x = v∆t given by (2.1) into (2.4) so as to
eliminate ∆x it is found that:

∆t′ =
∆t

γ
. (2.9)

Since this time dilation relation contains no spatial coordinates it is applicable to any
clock at rest in S’, independently of its spatial position. It then follows from (2.9) on
introducing the epochs t′1(t), t′2(t) recorded by C’0 ,C’1 respectively, at epoch t that:

∆t′1 ≡ t′1(t) − t′1(t0) = ∆t′2 ≡ t′2(t) − t′2(t0) =
∆t

γ
≡ t − t0

γ
(2.10)

so that if C’0 and C’1 are synchronised at t = t0: t′1(t0) = t′2(t0) = t′(t0) they remain
so at all later times for any value of t: t′1(t) = t′2(t) = t′(t) —there is no ‘relativity
of simultaneity’ effect for spatially-separated clocks as in conventional special relativity
theory. For further discussion of the spurious nature of ‘relativity of simultaneity’ and
the correlated ‘length contraction’ effect see Refs. [10, 11, 12].

The time intervals recorded by the clocks C’0 and C’1 are therefore, on combining
(2.5), (2.6) and (2.9):

∆t′
±
(β, θ) =

Dγ

c
[
√

1 − β2 sin2 θ ± β cos θ], (2.11)

∆t′010 = ∆t′101 =
2Dγ

c

√

1 − β2 sin2 θ. (2.12)

In the following two sections, it is shown how observations of the time intervals given
by Eqs (2.11) and (2.12) can be used, firstly to determine the parameters β, θ defining
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the motion of C’0 and C’1 in the frame S, and secondly to synchronise these clocks by
exchange of light signals.

Since only measurements internal to the system of moving clocks are considered, use

of (2.11) and (2.12) enables the motion of the frame S’ relative to S to be detected

by such purely ‘internal’ measurements. This is in contradiction with the widely-used

definition (following Poincaré [9]), mentioned above, of the special relativity principle, as

the assertion of the impossibility of such a detection.

3 Light-signal-exchange clock synchronisation at or-

der v/c

Retaining only order v/c terms in Eqs. (2.11) and (2.12) they simplify to:

∆t′
±
(β, θ) =

D

c
[1 ± β cos θ], (3.1)

∆t′010 = ∆t′101 =
2D

c
. (3.2)

At this order of approximation a single ‘echo delay’ measurement of ∆t′010 or ∆t′101 enables
measurement of the speed of light in free space, c, without any considerations of clock
synchronisation:

c =
2D

∆t′010
=

2D

∆t′101
(3.3)

Three distinct series of operations are required to determine β and θ from observations of
∆t′

±
(β, θ). Is is assumed at the outset that the values of c —possibly measured by use of

Eq. (3.3)— and the separation, D, of the clocks in the frame S are known. A space-time
experiment to measure the parameters v, θ and D, using a array of synchronised clocks
at rest in the frame S, is described in the Appendix. The operations are:

Ia: Stop C’0 and C’1 and set the epoch of C’0 to t′0 and that of C’1 to t′0 + D/c.

Ib: Start C’0 and send a light signal to C’1 .

Ic: Start C’1 on receipt of the light signal.

If β = 0 this procedure synchronises C’0 and C’1 . Since the signal from C’0 actually
arrives at C’1 at C’0 epoch:

t′0 + ∆t′+(θ) = t′0 + D(1 + β cos θ)/c

it follows that step Ic actually results in setting C’1 slow by the time interval (Dβ cos θ)/c
relative to C’0 .
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IIa: The line joining the two clocks is rotated anticlockwise through π/2 radians in the
xy plane of Fig. 1. During this procedure, C’0 and C’1 may have different velocities
in the frame S, so that there will be different time dilation effects that will change
the relative synchronisation of the clocks. Since however all such effects are at least
of order (v/c)2 they may be neglected at the level of approximation of the present
calculation.

IIb: Send a signal from C’1 to C’0 at known C’1 epoch (t′1)
A (i.e. at C’0 epoch

(t′1)
A + (Dβ cos θ)/c).

IIc: The signal arrives at C’0 at C’0 epoch2:

(t′0)
A = (t′1)

A + (Dβ cos θ)/c + ∆t′
−
(θ + π/2) = (t′1)

A +
D

c
[1 + β(cos θ + sin θ)].

IIIa: The line joining the two clocks is rotated clockwise through π radians in the xy
plane of Fig. 1 (i.e. clockwise by π/2 radians relative to their original orientation).

IIIb: Send a signal from C’1 to C’0 at known C’1 epoch (t′1)
C (i.e. at C’0 epoch

(t′1)
C + (Dβ cos θ)/c).

IIIc: The signal arrives at C’0 at C’0 epoch:

(t′0)
C = (t′1)

C + (Dβ cos θ)/c + ∆t′
−
(θ − π/2) = (t′1)

C +
D

c
[1 + β(cos θ − sin θ)].

With the definitions:

(∆t′0)
A ≡ (t′0)

A − (t′1)
A − D/c =

Dβ

c
[cos θ + sin θ], (3.4)

(∆t′0)
C ≡ (t′0)

C − (t′1)
C − D/c =

Dβ

c
[cos θ − sin θ] (3.5)

the parameters β and θ are given, in terms of time intervals measured uniquely by the
clock C’0 , as:

β =
c

2D

√

[(∆t′0)
A]2 + [(∆t′0)

C ]2, (3.6)

θ = arctan

[

(∆t′0)
A − (∆t′0)

C

(∆t′0)
A + (∆t′0)

C

]

. (3.7)

Finally, to synchronise the clocks, both C’0 and C’1 are stopped and the epoch of C’0 set
to t′0 and that of C’1 to :

t′1 = t′0 + ∆t′+(θ − π/2) = t′0 + D(1 + β sin θ)/c.

Clock C’0 is started, and simultaneously a signal is sent to C’1 . When C’1 is started on

receipt of the signal the clocks C’0 and C’1 are synchronised up to corrections of order β2.

2The epoch labels A(C) denote, respectively, anti-clockwise (clockwise) rotations by π/2 in the xy
plane of the line joining the two clocks.
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4 Exact Light-signal-echo synchronisation of three

clocks in the same inertial frame

In this case three clocks at rest in the frame S’: C’0 , C’1 and C’2 are considered,
disposed in the xy plane in the frame S, as shown in Fig. 2. The echo time-delays of
signals sent from C’0 to C’1 or C’2 and promptly reflected back, are given by Eq. (2.8) as:

∆t′010 = ∆t′+(θ) + ∆t′
−
(θ) =

2Dγ

c

√

1 − β2 sin2 θ, (4.1)

∆t′020 = ∆t′+(θ + π/2) + ∆t′
−
(θ + π/2)) =

2Dγ

c

√

1 − β2 cos2 θ. (4.2)

Squaring and adding (4.1) and (4.2) gives:

(∆t′010)
2 + (∆t′020)

2 =
(

2D

c

)2 2 − β2

1 − β2
(4.3)

Solving (4.3) for β gives:

β =

√

α − 2

α − 1
(4.4)

where

α ≡
(

c

2D

)2

[(∆t′010)
2 + (∆t′020)

2]. (4.5)

Taking the ratio of (4.1) to (4.2) gives:

R ≡ ∆t′010
∆t′020

=

√

1 − β2 + β2 cos2 θ

1 − β2 cos2 θ
. (4.6)

Solving (4.6) for θ gives:

θ = arccos
1

β

√

R2 − 1 + β2

R2 + 1
. (4.7)

Once the values of β and θ have been determined from (4.4) and (4.7) respectively, the
clocks C’0 , C’1 and C’2 may be synchronised by a procedure similar to that used for the
clocks C’0 and C’1 in the previous section:

(i) All three clocks are stopped and their epochs set to the values:

C′

0 : t′0, C′

1 : t′0 + ∆t′+(β, θ) C′

2 : t′0 + ∆t′+(β, θ + π/2)

where ∆t′+(β, θ) and ∆t′+(β, θ + π/2) are given by Eq. (2.10).

(ii) Light signals are sent to C’1 and C’2 from C’0 at the instant that the latter clock is
started.

(iii) C’1 and C’2 are started on receipt of the light signals from C’0 .

(iv) C’0 , C’1 and C’2 are now synchronised.
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Figure 2: Geometrical configuration of three clocks C’0 , C’1 and C’2 at rest in the frame

S’, that moves with speed v relative to S. See text for discussion.
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In the case that the angle θ in Fig. 2 can be varied in a controlled manner a simpler
strategy can be used to find, by measurements internal to the frame S’, the magnitude
and direction of the speed of S’ relative to S:

(i) The angle θ is varied until ∆t′010 = t′020.

(ii) Since inspection of (4.1) and (4.2) shows that now θ = −π/4, the direction of the
relative motion is the bisector of the angle C’1 C’0 C’2 .

(iii) By aligning the path C’0 C’1 with the direction of the relative velocity (i.e. setting
θ = 0 in Fig. 2) the speed of light is given (exactly 3) by Eq. (4.2) as

c =
2D

t′020(θ = 0)
(4.8)

and the (exact) magnitude of the relative velocity by (4.1) and (4.2) as:

v = c

√
γ2 − 1

γ
, γ =

t′010(θ = 0)

t′020(θ = 0)
(4.9)

The formula (4.8) corresponds to the familiar ‘transverse photon clock’ geometry as dis-

cussed, for example, in the Feynman Lectures on Physics [13].

5 Synchronisation of clocks without light signals

At the outset two types of synchronisation procedures may be distinguished: intra-

frame synchronisation in which the clocks-to-be-synchronised are at rest in the same
reference frame and inter-frame synchronisation in which the clocks are in different inertial
frames.

A conceptually simple type of intra-frame synchronisation, applicable within any in-
ertial frame, is one in which the light signal of the Einstein procedure are replaced by a
‘messenger object’ (MO) programmed to move in a known manner within the frame. In
the ‘messenger-exchange’ procedure, strictly analogous to the Einstein light signal pro-
cedure, the MO moves away from clock A at A epoch tA1 , being first accelerated, then
decelerated so as to arrive at rest at clock B. The clock B which has previously been set
to the epoch tA1 is started by the arrival of MO. After an arbitary time interval, TB as
recorded by B. the MO moves back in a symmetrical (time reversed) manner to clock A,
arriving there at A epoch tA2 . On advancing the epoch recorded by B by the time interval:

∆tB =
tA2 − tA1 − TB

2
(5.1)

the clocks A and B are synchronised.

3That is, correctly to all orders in v/c.
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In the even simpler ‘dual-messenger’ intra-frame procedure two MOs are placed mid-
way between (or, more generally, at any point on a line perpendicular to the line joining
the two clocks, and passing through the mid-point of the latter line) the two clocks-to-
be-synchronised, A and B. The clocks are stopped and set to any desired epoch: tA =
tB = t. The two adjacent MOs simultaneously intitiate identical acceleration/deceleration
programs one towards A, the other towards B. The clocks A and B, started by the arrivals
of the respective MOs are then synchronised. Worldline diagrams of the ‘messenger-
exchange’ and ‘dual-messenger’ procedures can be found in Figs. 1 and 2, repectively, of
Ref. [14].

Synchronised clocks at rest in the frame S’, as considered in Section 2 can be alter-
natively obtained by symmetrical transport of clocks initially at rest in the frame S and
synchronised there by any convenient method (for example, Einstein light signal synchro-
nisation). This method exploits the spatial-position-independence of the time dilation
relation (2.9). In the simplest application of this method two clocks A and B are placed
together at some point in the frame S and synchronised so that tA = tB = t. At some
arbitary later instant both clocks are accelerated and decelerated in an arbitary, though
identical, manner in any direction, so they are both finally at rest in the frame S at points
equidistant from their original postion. Since the proper time evolution of the clocks,
given by integration of the time dilation relation (2.7) is the same they remain synchro-
nised throughout this clock transport. This synchronisation is maintained when they are
finally accelerated in an arbitary, but identical, manner, into the frame S’. Notice that
the clock transport method is valid for for an arbitary acceleration/deceleration program
provided that it is applied in an identical manner to both clocks. This is to be contrasted
with the ‘slow clock transport’ method considered by Bridgman [15] and Mansouri and
Sexl [16].

A method to synchronise four clocks, two in each of two inertial frames by ‘length
transport’ has been described in Ref. [17]. This method therefore combines intra-frame
and inter-frame synchronisations in a single procedure. Its application to two clocks at
rest in the frame S: A and B, and two clocks at rest in the frame S’: A’ and B’, can be
understood by reference to Fig. 1. Initially, all four clocks are stopped and set to the same
epoch. The clocks A and B are then placed in the position of C’0 and C’1 in Fig. 1; the
clocks A’ and B’ just above them, but with the same x-coordinates. A’ and B’ are then
moved the same distance in the negative x-direction till they are adjacent to two other
clocks A0 and B0, at rest in S, that have previously been synchronised by any convenient
procedure. At a pre-determined instant, controlled by the epoch of A0 and B0, A’ and B’
are accelerated, in an identical manner, in the positive x-direction up to speed v in the
frame S. When A’ is later aligned with A and, simultaneously, B’ is aligned with B, all
four clocks are started. At this instant all four clocks register the same epoch. At later
times A and B as well as A’ and B’ remain synchronised, but because of the time dilation
effect the clocks at rest in S (A and B) are no longer synchronised with those at rest in
S’ (A’ and B’).

A variation of this method where four synchronised clocks at known positions in the

frame S are used to measure the essential S-frame prameters v, D and θ of the space-time

experiments discussed in Section 2 above, is described in the Appendix.
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6 Internal detection of uniform translational motion

by clock transport

The time dilation relation (2.9) which is an immediate consequence of postulate (iii)
(The Lorentz transformation of space and time intervals between the frames S and S’)
gives the possibility, actually realised in the Hafele-Keating (HK) experiment [18, 19]
performed in 1971, to detect the uniform motion of an inertial frame by observation of
time intervals recorded by a clock moving, in a known manner, relative to the inertial
frame. Since only time intervals recorded by a single clock are considered in this analysis,
all considerations of clock synchronisation are irrelevant.

Referring to Fig. 2, a single clock, C”, is moved with constant speed v′ in the frame S’
between C’0 and C’1 or C’0 and C’2 . Only the clock C” is observed, the others are used
only as spatial markers. Denoting by (+) the outward displacement from C’0 and by (−)
the return displacement, in the analysis at order (v/c)2, considered here, it is sufficient to
use Galilean transformations to determine the velocity of the clock C” in the frame S. In
an obvious notation, it is found that:

v1(+) = [v2 + (v′)2 + 2vv′ cos θ]
1

2 , (6.1)

v1(−) = [v2 + (v′)2 − 2vv′ cos θ]
1

2 , (6.2)

v2(+) = [v2 + (v′)2 − 2vv′ sin θ]
1

2 , (6.3)

v2(−) = [v2 + (v′)2 + 2vv′ sin θ]
1

2 . (6.4)

Denoting the transit times in the frame S, S’ of each passage of the clock C” by ∆t,
∆t′ respectively, and the time intervals recorded by C” during the passages as: ∆t′′1(+),
∆t′′1(−), ∆t′′2(+) and ∆t′′2(−), the time dilation relation (2.9) gives the relations:

∆t = γ[v]∆t′ = γ[v1(+)]∆t′′1(+) = γ[v1(−)]∆t′′1(−),

= γ[v2(+)]∆t′′2(+) = γ[v2(−)]∆t′′2(−). (6.5)

where γ[v] ≡ 1/
√

1 − (v/c)2. On retaining only order (v/c)2 terms if follows from (6.1) to

(6.5) that

∆t′′1 ≡ ∆t′′1(+) − ∆t′′1(−) = −2∆t

c2
vv′ cos θ + O(β4) (6.6)

∆t′′2 ≡ ∆t′′2(+) − ∆t′′2(−) =
2∆t

c2
vv′ sin θ + O(β4) (6.7)

Since ∆t = γ[v]∆t′ ≃ ∆t′[1 + v2/(2c2)], (6.6) and (6.7) simplify, further, at order (v/c)2,
to

∆t′′1 ≃ −2∆t′

c2
vv′ cos θ = − 2

c2

(

D

v′

)

vv′ cos θ

= −2Dv cos θ

c2
+ O(β4), (6.8)

∆t′′2 =
2Dv sin θ

c2
+ O(β4). (6.9)
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It is interesting to note that at order (v/c)2, ∆t′′1 and ∆t′′2, although sensitive to v and θ
(and so to the motion of S’ relative to S) are independent of the value of the velocity v′.

Solving (6.8) and (6.9) for θ and v gives:

θ = −arctan

[

∆t′′2
∆t′′1

]

= arctan

[

∆t′′2(+) − ∆t′′2(−)

∆t′′1(−) − ∆t′′1(+)

]

, (6.10)

v =
c2

2D
[(∆t′′1)

2 + (∆t′′2)
2]

1

2 (6.11)

formulas with a similar structure to (3.7) and (3.6) respectively in a space-time experiment
with a similar geometry involving the exchange of light signals.

In the case that the values of v, v′ and θ are known, the relation (6.5) can be used
to synchronise, for example, the clock C’0 and the moved clock C”. In order to do this
C’0 and C” are set to the same epoch at the beginning of the outward displacement of C”
between C’0 and C’1 . The clock C” is synchronised with C’0 , by adding to its epoch, at
any instant after it has been displaced to the position of C’1 , where it is brought to rest
in the frame S’, the quantity δt′ where:

δt′ ≡ ∆t′ − ∆t′′1(+) = ∆t′
[

1 − ∆t′′1(+)

∆t′

]

=
D

v′

[

1 − γ[v]

γ[v1(+)]

]

=
Dv′

2
[v′ + 2v cos θ] + O(β4). (6.12)

This method of synchronising clocks in a inertial frame with known motion was suggested

by Ives [20] with a view to performing a measurement of the one-way speed of light.

7 Physical preferred frames

The simplest example of a preferred frame for isotropic light propagation with a fixed
velocity is provided by the local inertial frame, at any point in the universe remote from
the gravitational fields of discrete objects, within which the frequency distribution of the
locally measured Cosmic Microwave Background (CMB) is observed to be isotropic. This
frame is experimentally determined by use of a direction-sensitive microwave detector
to measure the spectrum of the CMB. The measured direction-dependent Doppler shift
(‘Dipole Term’) defines a boost into a definite frame where the frequency anisotropy
vanishes. According to the COBE experiment [22] the Solar system is moving with a
velocity of 369 km/s relative to the frame in which the CMB is isotropic. If a transmitter
of electromagnetic signals of known frequency is placed at rest in this inertial frame,
measurement of the observed Doppler shift of this signal determines the velocity of any
receiver relative to the preferred frame tagged by the transmitter.

Of more practical importance are the preferred frames associated with the gravitational
fields around massive astronomical bodies such as the Earth or the Sun. As remarked by
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Su [23, 24] these gravitational fields constitute effective ‘local aethers’ where the speed
of light is less than, but close to, its speed in free space. For the case of the Earth it
is a prediction of the Schwarzschild metric equation [25, 26] of general relativity that
the ECI (Earth-Centered Inertial) frame [27] is a preferred one of this type. The ECI
frame is an inertial frame instantaneously co-moving with the centroid of the Earth, with
coordinate axes pointing in fixed directions relative to the Celestial Sphere. Since it is
the ‘fixed stars’ that serve as the reference for rotational motion, this can be considered
as a practical application of Mach’s Principle. The SCI (Sun-Centered Inertial) frame is
defined in a similar manner. In the operation of the Global Postioning System (GPS)
microwave signals transmitted by Earth-satellites are assumed to have a uniform speed c
in the ECI frame [27].

For a light signal moving parallel to the surface of the Earth at low altitude, h,
(h ≪ RE where RE is the radius of the Earth, assumed spherical) the velocity is given by
the Schwarzschild metric equation:

0 = (dτ)2 =

(

1 +
2φE

c2

)

(dt)2 − R2
E(dφ)2

c2
(7.1)

where φE = −GME/RE is the gravitational potential at the surface of the Earth. To first
order in φE, the light signal speed in the ECI frame is:

cE ≡ RE
dφ

dt
=

(

1 +
φE

c2

)

c (7.2)

The known values of the mass, ME, and radius of the Earth give; φE/c2 = −6.94 × 10−10

so that
∆cE

c
=

cE − c

c
= −6.94 × 10−10

For practical applications of the GPS [27] any reduction of the speed of light signals in the
vicinity of the Earth due to the effect of the gravitational field of the latter is negligible.
On the surface of the Earth then, the preferred frame S considered in the calculations of
Sections 2-6 above can, to a very good approximation, be identified with the ECI frame,
while the instantaneous comoving inertial frame of a point at rest on the surface of the
rotating Earth may be identified with the frame S’.

It is interesting to note that the isotropic propagation of light, at fixed speed c, assumed
to exist in the frame S in postulate (i) is actually a necessary consequence of relativistic
kinematics and the massless (or almost massless) nature of photons [28]. Consider any
process in the frame S (i.e. for experiments performed on the surface of the Earth, the ECI
frame) in which particles are produced. Independently of the details of the production
mechanism, the velocity, v, of any particle is related to its Newtonian mass, m, relativistic
energy, E, and relativistic momentum ~p by the formula:

v =
pc2

E
=

pc2

[m2c4 + p2c2]
1

2

(7.3)

where p ≡ |~p|. This predicts that for any particle respecting the condition p/c ≫ m
then v ≃ c and for a strictly massless particle v = c. Since (7.3) depends only on p and
not ~p there can be no ‘intrinsic’ anisotropy in the velocity distribution of the produced
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particle. Indeed, the angular distribution of the velocity is controlled by the physics of
the production process, not by any anisotropy of the space-time metric.

For example, to correctly describe the progagation of neutrinos produced in laboratory
experiments on the surface of the Earth, the kinematics of the production process should
be calculated, not in the Earth-fixed laboratory frame, but in the ECI frame. The time
of flight of neutrinos, produced with speed ≃ c according to Eq. (7.3) in the ECI frame,
between Earth-fixed sources and detectors must then take into account the motion of
these due to the Earth’s rotation [30]. In a similar manner the microwave signals of the
GPS have a speed close to c only in the ECI frame, not in the proper frame of a receiver
at a fixed position on the surface of the Earth. This ‘Sagnac effect’ is taken into account
in the GPS software [27]. After correcting for the Sagnac effect a limit on the speed
anisotropy of microwave signals of δc/c < 5 × 10−9 has been obtained [31].

Proper time intervals dτ of a clock in the vicinity of the Earth, where space-time cur-
vature is dominated by the Earth’s gravitational field, are described by the Schwarzschild
metric equation, which is the solution of Einstein’s field equations of general relativity for
a non-rotating, spherically symmetrical source [25, 26]:

dτ =



1 +
2φE(r)

c2
− 1

c2





v2
r

1 + 2φE(r)
c2

+ v2
θ + v2

φ









1

2

dT (7.4)

where φE(r) ≡ −GME/r is the gravitational potential at distance r from the center of
the Earth (assumed to be spherical) and ME is the mass of the Earth. The origin of the
spherical polar coordinates (r,θ,φ) is at the centre of the Earth and the ‘coordinate time
interval’, dT , is that which would be recorded by a hypothetical clock, a rest in the ECI
frame, sufficiently far from the Earth that φE ≃ 0. For a clock moving parallel to the

surface of the Earth with velocity v =
√

v2
θ + v2

φ, then vr = 0 and (7.4) simplifies to:

dτ =

[

1 +
2φE(RE)

c2
− β2

] 1

2

dT (7.5)

where β ≡ v/c and RE is the radius of the Earth. Denoting the proper frame of the moving
clock by S’ and the ECI frame, where β = 0, by S gives the metric interval equations:

In the frame S′ : dτ = dt′ =

[

1 +
2φE(RE)

c2
− β2

]
1

2

dT, (7.6)

In the frame S : dτ = dt =

[

1 +
2φE(RE)

c2

]
1

2

dT. (7.7)

Retaining only order β2 terms on taking the ratio of (7.7) to (7.6) it is found that

dt =



1 +
β2

2
(

1 + φE(RE)
c2

)



 dt′ + O(β4)

=

[

1 +
β2

2

]

dt′ + O

(

β2φE(RE)

c2

)

. (7.8)
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Since (7.8) gives the same order β2 approximation as the time dilation relation (2.7) it is
clear that, at this level of approximation, and for experiments performed on the surface
of the Earth, the frame S introduced in Section 2 may be identified with the preferred
ECI frame.

That the ECI frame is then a preferred one, not only for the isotropic propagation of
light at speed close to c, but also for the calculation of time dilation, becomes evident
on considering different values of the velocity v in the interval Lorentz transformation
equations (2.1) and(2.2). For example, v = v+ > 0 (frame S’+) and v = −v− < 0 (frame
S’−) give, from (2.9), the time dilation relations:

∆t = γ(v+)∆t′+ = γ(v−)∆t′
−

(7.9)

If v+ = −v− = v it follows from (7.8) that ∆t′+ = ∆t′
−

so that although the clocks at rest

in S’+ and S’− have a relative velocity of 2v in the frame S, there is no time dilation effect

for these two clocks [21]. The time dilation effect therefore does not depend only on the

relative velocity of the clocks, as might be concluded from a naive inspection of Eq. (2.9).

The second member of Eq. (7.9) can be considered as the basis for the calculation of special

relativistic contributions to the time intervals recorded by the clocks of the Hafele-Keating

experiment [32, 33, 18, 19, 12] and is verified by the good agreement between prediction

and observation found in this experiment [19].

8 Discussion

The much discussed concept of ‘Conventionalty of Clock Synchronisation’ [34], origi-
nally developed from a philosophical standpoint by Reichenbach [7] and Grünbaum [35]
was based on three independent arguments:

(1) A misinterpretation of the result of the Michelson-Morley experiment (MME) [36].

(2) Application of ‘Lorentz-Fitzgerald Contraction’ or ‘relativistic length contraction’
to the analysis of the MME.

(3) The assumption that clock synchronisation is possible only by exchange of light
signals.

It was assumed, in the original analysis of the MME, that the putative ‘aether frame’
is identified with the SCI, instead of the ECI, as predicted by general relativity, and
discussed in the previous section. In this case, the speed of the ‘aether wind’, to which
it was assumed the MME would be sensitive, is identified with the speed of rotation of
the Earth in its orbit around the Sun: ≃ 30km/s instead of the speed of rotation of
the surface of the Earth about its polar axis: ≃ 300m/s — an ‘aether wind’ a factor
of 10−2 weaker and a phase shift in the MME a factor 10−4 times smaller. As pointed
out by Su [23, 24] neither the original MME, nor any of its successors, was sufficiently
sensitive to observe the rotation of the Earth in these order β2 experiments. In contrast,
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using the order β Sagnac effect, rotational motion of an interferometer relative to the
ECI frame was measured in 1913 [37] and the rotation of the Earth relative to the ECI
frame was measured by Michelson and Gale in 1925 [38]. As discussed in the previous
section, the gravitational field of the Earth constitutes an ‘effective aether’ which renders
the ECI frame a preferred one for propagation of light at speeds close to c in the region
of the Earth. The existence of a similar, but different, ‘effective aether’ constituted by
the gravitational field of the Sun in the SCI frame, was demonstrated by the Shapiro
radar-echo-delay experiments [39] , where microwave signals were reflected back to the
Earth from the inner planets Venus and Mercury.

In the analysis presented in Section 2 above, the distance D separating the to-be-
synchronised clocks is defined in the frame S, not in the proper frame, S’, of the clocks.
The measurement of this separation, using synchronised clocks at known positions in the
frame S is described in the Appendix. If instead, D is identified with the clock separation
in the frame S’ and ‘length contraction’ parallel to the x-axis is assumed to occur in the
frame S, then the distance from C’0 to N in Fig. 1 becomes D cos θ/γ. Application of the
Theorem of Pythagoras to the triangle O C’0 N then gives, instead of Eqs. (2.8) and (2.9):

∆t′
±
(β, θ) =

D

c
[1 ± β cos θ] [D cos θ → (D cos θ)/γ], (8.1)

∆t′010 = ∆t′101 =
2D

c
[D cos θ → (D cos θ)/γ]. (8.2)

The null result of the MME was incorrectly interpreted as evidence for the correctness of
Eq. (8.2) and, consequently, of the existence of relativistic ‘length contraction’.

Another prediction of (8.2) (due to the independence of the right side on v and θ) is
the velocity-independence of the two-way speed of light. So, in agreement with Poincaré’s
statement of the special relativity principle, observation of ∆t′010 or ∆t′101 gives no infor-
mation on the relative velocity of the frames S and S’. A corollory, which is the basis for
the ‘Conventionality of Clock Synchronisation’ concept is that, if light signal exchange is
the only way to synchronise spatially-separated clocks (i.e. the argument (3) above) it
is impossible to measure the one way speed of light. This is because this measurement
requires clocks to be synchronised, but clocks can only be synchronised if the one way
speed of light is already known. However, regardless of whether length contraction exists
or not, if the distance D is defined and measured in the frame S, which is the case for the
calculation of Section 2 above, ∆t′010 and ∆t′101 are given by Eq. (2.12) and are sensitive

to the relative velocity of the frames S and S’, violating Poincaré’s statement [9] of the
special relativity principle. This is a necessary consequence solely of the postulates (i) and
(ii) of Section 2 above and so holds both for Galilean relativity (∆t = ∆t′) and special
relativity (∆t = γ∆t′). Also, as described in Sections 5 and 6, many methods of clock
synchronisation not requiring exchange of light signals exist. If any of these methods is
used, there is no logical difficulty preventing the measurement of the one-way speed of
light.

Since all space-time geometrical calculations in the present paper have been performed
in the frame S where, by hypothesis, light is propagated isotropically with speed c, no
consideration of the velocity of light in the proper frame S’ of the moving clocks has been
made. Einstein’s formulation of special relativity theory is based, as well as on the special
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relativity postulate —that the laws of physics are the same in all inertial frames— on the
second postulate that the speed of light is the same in all inertial frames. However, as
will now be demonstrated, Einstein’s second postulate cannot be true if the postulates
(i), (ii) and (iii) introduced in Section 2 hold. Indeed, correct calculations presented in
the original special relativity paper [5] show, when combined, that the postulate of the
frame-independence of the speed of light is untenable.

In Section 2 of Ref. [5] with the title ‘On the Relation of Lengths and Times’ Einstein
performed the calculation of Section 2 above for the special case θ = 0. Einstein also
gave explicitly the postulates (i) and (ii) above as the basis for the calculation. The result
obtained (in the notation of the present paper) was:

∆t± =
D

c ∓ v
(8.3)

as obtained by setting θ = 0 in Eqs. (2.5) and (2.6).

In Section 3 of Ref. [5] the Lorentz transformation equations, equivalent to postulate
(iii) above, were derived and in the following section, the time dilation relation, Eq. (2.9)
in the notation of the present paper, was derived. If D′ is the separation of the clocks in
the frame S’ then the postulate (ii), if also applied in the frame S’, together with the time
dilation relation (2.9), give for the velocity of light in this frame:

c′
±

=
D′

∆t′±
=

γD′

D

D

∆t±
=

γD′

D
(c ∓ v) 6= c

= c ∓ v + O(β2). (8.4)

So regardless of whether ‘length contraction’ exists (D′ = γD) or not (D′ = D) it is
impossible that the speed of light, defined according to the postulate (ii) in the frame S’,
can be c.

Just after the derivation of the Lorentz transformation in Ref. [5] an argument based
on a thought experiment involving light waves was given that claimed to show that the
Lorentz transformation predicted the frame-independence of the speed of light. It was
concluded that: ‘This shows that our two fundamental principles are compatible’. It is
also stated in a footnote to the English translation of Ref. [5] that assuming the speed of
light is the same in all inertial frames is sufficient to derive the LT —a simple calculation
to be found in many text books and pedagogical papers.

Actually Einstein’s ‘light wave’ calculation is marred by a trivial mathematical error
—use of the same mathematical symbol to represent quantities that have completely
different physical meanings. The parameters β and γ may be eliminated for the interval
LT (2.1)-(2.4) to obtain the invariant interval relation:

(∆x)2 + (∆y)2 + (∆z)2 − c2(∆t)2 = (∆x′)2 + (∆y′)2 + (∆z′)2 − c2(∆t′)2. (8.5)

In the notation of Ref [5], this is written:

x2 + y2 + z2 − c2t2 = ξ2 + η2 + ζ2 − c2τ 2. (8.6)
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In Ref. [5] the right and left members of (8.6) were spuriously identified with spherical
‘light waves’ in the frames S and S’ respectively:

x2 + y2 + z2 − c2t2 = 0, (8.7)

ξ2 + η2 + ζ2 − c2τ 2 = 0. (8.8)

With this identification, then assuming (8.7) holds (i.e. a spherical light wave moving
with speed c in the frame S) and applying the relation (8.6), derived from the LT, then
(8.8) is derived, showing that a spherical light wave moving with speed c also exists in the
frame S’ —consistent with the second postulate. However this is a physically meaningless
calculation since the coordinate intervals in (2.1)-(2.4) and in Einstein’s equation (8.6)
are those on the world line of an object at rest in the frame S’, not of a light signal or a

photon, as is assumed to be the case in Eq. (8.7). Indeed, since the world line equation in
S: x = vt was assumed in Ref. [5] in order to derive the time dilation relation it follows
from the space LT (2.1) that ξ = 0. Since also (see (2.2) and (2.3)) y2 + z2 = η2 + ζ2 = 0
(8.6) simplifies to

x2 − c2t2 = −c2τ 2 (8.9)

equivalent to the time dilation relation: t = γτ . Clearly the two members of (8.6)
can never vanish if τ > 0 as is assumed to be the case in the ‘light wave’ equations
(8.7) and (8.8). Einstein’s claimed derivation of the second postulate from the LT —or
the possibility to derive the LT by assuming that the second postulate holds— is then
invalidated by a trivial mathematical error. This is the use of the same symbols to denote
different physical quantities, in one case intervals on the world line of a ponderable object
at rest in the frame S’, as in Eq. (8.6), in the other, intervals on the world line of a light
signal propagating with speed c in frame S, as in Eq (8.7).

The equality of the speed of light in the frames S and S’ is also a consequence of
Einstein’s velocity composition formula derived in Section 5 of Ref. [5]. However, the
derivation of this formula is also invalidated by a similar mathematical error to the one
concerning ‘light waves’ in the frames S and S’ just discussed. Retaining the notation
of the present paper, Einstein’s velocity transformation formula is derived by taking the
ratio of the interval LT equations (2.1) and (2.4) to give:

∆x′

∆t′
=

∆x − v∆t

∆t − v∆x
c2

=
∆x
∆t

− v

1 − v
c2

∆x
∆t

. (8.10)

Einstein then defines two velocities w′ ≡ ∆x′/∆t′ and w ≡ ∆x/∆t 6= v in order to obtain
from (8.10) the velocity transformation formula:

w′ =
w − v

1 − vw
c2

(8.11)

Setting w = c in this equation gives w′ = c′+ = c in accordance with the second postulate.
However, since, in fact, ∆x/∆t = v, as correctly assumed by Einstein in order to derive
the TD relation (2.9) above, the right side of (8.10) is actually

w′ =
v − v

1 − v2

c2

= 0. (8.12)

Then ∆x′/∆t′ ≡ w′ = 0 6= c.
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The relation

∆t′ = γ
(

1 − vw

c2

)

∆t (8.13)

which is assumed to hold in order to derive (8.11) is in contradition with the time dilation
relation ∆t′ = ∆t/γ if w 6= v. Indeed Eq. (8.13) is logically absurd since it predicts that
the time interval, ∆t′, recorded by a clock at rest in S’ depends, for a given value of ∆t,
on the speed of motion w of an arbitary object in the frame S! When w = ∆x/∆t = v
(the interval worldline, in the frame S, of an arbitary object at rest in the frame S’) then
(8.13) correctly yields the time dilation relation (2.9).

The correct value of c′+ is given by (8.4) with D = D′ [10, 11, 12]. The interval LT
equations (2.1) and (2.4) are only valid for intervals on the world line of a ponderable
object at rest in the frame S’, not as assumed by Einstein, for an object with an arbitary

velocity w′ in the frame S’. Again, the same mathematical symbol is used to denote two
physically distinct quantities.

The space-time LT were originally derived as the transformations that render the form
of Maxwell’s equations of classical electromagnetism the same in every inertial frame.
Maxwell’s application [40] of these equations in ‘free space’ to demonstrate the existence
of ‘electromagnetic waves’ with a certain speed c then necessarily implies that such waves
must have this speed in all inertial frames. On the other hand if light does propagate as
a ‘signal’ (of unspecified nature) with fixed speed c in any particular frame of reference,
the space-time geometrical calculation of Section 2 above, performed in this frame, shows
that it is impossible that the signal has the same speed in any other inertial frame. This
was clearly shown (but not remarked upon) by Einstein in Ref. [5] where Eq. (8.3) was
given. This equation together with the time dilation relation (2.9) (also derived in Ref. [5])
necessarily leads, with the Galilean definition of velocity of postulate (ii) (as assumed in
Ref. [5]) also in the frame S’, to Eq. (8.4), which negates the second postulate of special
relativity.

If light is identified with ‘electromagnetic waves in free space’ there is then a clear anti-
nomy between the predictions of, on the one hand, space-time geometry and the interval
LT and, on the other, the second postulate. A possible way to resolve this antinomy at
the time of this writing (the beginning of the 21st Century) may be to finally recognise
that light actually consists not of the ‘electromagnetic waves’ predicted by Maxwell in
1865 but more likely of massless particles: ‘light quanta’ or photons for the discovery of
which in 1905 Einstein was awarded the 1921 Nobel Prize for Physics. The word ‘consists’
above is used in the ontological sense —the answer to the question: ‘What is light?’—
not as the specification of some attribute. This is not to say that the ‘electromagnetic
wave’ concept is without any physical significance whatever. Indeed phenomena involving
very large numbers of real photons interacting with very large numbers of electrons are
very conveniently described as the effect of phenomenological ‘electromagnetic waves’,
obtained as the solution of Maxwell’s equations with sources, according to certain bound-
ary conditions. Examples are radio antennas, wave guides or the accelerating cavities of
particle accelerators. However the Feynman diagrams of quantum electrodynamics do not
allow the production of photons without sources, completely forbidding any identification
of Maxwell’s ‘free space’ electromagnetic waves with photons. Indeed retaining them and
their associated electromagnetic fields after abandoning the aether, as suggested by Ein-
stein in Ref. [5], was tantamount to banishing the ocean but still retaining the waves on
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the shore.

An analogy can be made between phenomenological electromagnetic fields and pho-
tons, and an army and the individual soldiers of which it is composed. It is convenient
to describe the movements of different regiments making up the army: infantry, cavalry,
artillery etc (c.f. electric fields, magnetic fields) but the army always is a certain num-
ber of soldiers —actual members of the species homo sapiens— and their equipment (c.f.
numbers of real or virtual photons).

As described in detail elsewhere [41] the physical significance of electromagnetic fields
in the limit of low photon density becomes identical to that of the quantum wave function,
or probability amplitude, for experiments in which single photons are observed. Further
critical discussion of the concept of ‘wave particle duality’ and the connection between
quantum mechanics and classical wave theories of light or massive particles is found in
Ref. [42].

Pais has discussed [43] the extreme reluctance of the physics community to accept the
light quantum concept —that light actually consists of particles— between its discovery
by Einstein in 1905 [44] and its confirmation by Compton in 1923 [45]. Even stranger,
perhaps, is Einstein’s own reluctance to see the connection between his own light quantum
concept, relativistic mechanics, and the speed of light. Indeed the remark in Ref. [5] that:

‘It is remarkable that the energy and the frequency of a light complex vary with the
state of motion of the observer in the same manner.’

is a necessary consequence of the Planck-Einstein relation E = hν for an individual
light quantum given earlier by Einstein in 1905 in Ref. [44]. Also the constancy of the
speed of light in some inertial frame of reference4 necessarily follows from relativistic
kinematics —Eq. (7.3) above— in the case that light consists of massless particles. This
assertion [28] could have been made at any time after Planck wrote down the formulas
for relativistic energy (E = γmc2) and momentum (p = γmv) in 1906 [46, 48].

As discussed in Section 7 above the ‘free space’ within which special relativity is
supposed to be valid is not an obvious feature of the known universe. Far from gravitating
matter, in interstellar or intergalactic space, a natural reference frame is provided by the
isotropy frame of the CMB. Near to gravitating matter e.g. in the Solar system near to
the Sun, or near to the surface of a planet, a preferred frame for light propagation with
a speed close to c, is provided by general relativity. For a spherical gravitating body
this is the frame in which space-time curvature is described by the Schwarzschild metric
—the ECI frame for the Earth and the SCI frame for the Sun. As demonstrated by the
Hafele-Keating experiment [47], the same preferred frame controls the relative rates of
clocks in motion near to the gravitating body. These rates are correctly given at order
(v/c)2 by the special relativistic time dilation effect using the preferred inertial frame to
specify the clock velocities (Eq. (7.8) above).

The above considerations show that it was not the arguments given in Einstein’s 1905
light quantum paper that were ‘heuristic’ but rather those concerning the LT in the

4The frame in which it is chosen to to calculate the energy and momentum of the created photon
according to the laws of relativistic kinematics.
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special relativity paper. Maxwell’s prediction of ‘electromagnetic waves’ in free space can
similarly be considered as the heuristic discovery that light consists of massless particles.
The existence of light quanta (photons) of energy hν and momentum hν/c is verified by
their essential role in the most successful and precise theory in the history of physics —
quantum electrodynamics. Einstein gave a mathematically flawed derivation of the LT by
assuming that the speed of light is the same in all inertial frames but then proceeded to
derive from it both the experimentally confirmed time dilation effect and the equivalence
of mass and energy, a completely novel concept with enormous practical consequences [48].

Maxwell used fields in ‘free space’ (sourceless fields that do not exist in quantum elec-
trodynamics) to predict ‘electromagnetic waves’ —identified as light— as a disturbance of
a putative luminiferous aether (now known to effectively exist, with predicted properties,
as a consequence of general relativity) with fixed speed c. The almost constant value of
the speed of light, in certain preferred frames of reference, is now understood most sim-
ply as a consequence of relativistic kinematics (Eq. (7.8) above) and the fact that light
consists of massless (or very light) particles.

In summary, Einstein’s light quantum paper was, to the best of our current knowledge

not at all ‘heuristic’ but a major experimentally verified discovery about the nature of

the real world. It contained the seed from which grew the splendid plant of quantum

electrodynamics [49, 50] and other analogous modern particle physics theories. Einstein’s

‘special relativity theory’ and Maxwell’s prediction of ‘electromagnetic waves’ in free space

were mathematically and/or conceptually flawed but nevertheless gave some important

predictions that were in accord with experiment —predictions that were therefore ob-

tained in a heuristic manner. The enormous practical ramifications of Maxwell’s classical

electromagnetism and Einstein’s special relativity were not in any way affected by the

manner in which these theories were discovered.

9 Summary and Conclusions

Assuming that a reference frame, S, exists in which light propagates isotropically with
uniform speed, as well as the validity of the time dilation relation (2.9) (which is an
immediate consequence of the interval LT (2.1)-(2.4)), measurements of time intervals
between light signals recorded by the single clock C’0 at rest in an arbitary inertial frame
S’ are sufficient to determine the parameters β = v/c and θ specifying the relative motion
of the frames S and S’. This is done up to corrections of order v/c by use of Eqs. (3.6)
and (3.7) or exactly (to all orders in v/c) by use of Eqs. (4.6) and (4.7). This knowledge
of the motion of the frame S’ relative to S enables two (or three) clocks at rest in S’ to
be synchronised by exchange of light signals using the procedures described in Section 3
(or Section 4).

These determinations of the relative motion of two inertial frames are counter exam-
ples to Poincaré’s statement of the special relativity principle as the impossibility, by
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internal measurements, to detect uniform translational motion. Another counter example
is provided by observation of time intervals recorded by clocks moving with a uniform ve-
locity relative to the frame S’, as described in Section 6. This method of internal detection
of relative motion has been verified by the Hafele-Keating experiment.

Actual examples of reference frames where light propagates, to a very good approx-
imation, uniformly and isotropically are the local reference frame, at any point in the
Universe, distant from discrete gravitating objects, where the observed frequency of the
CMB is isotropic, or the ECI and SCI frames in the proximity of the Earth and Sun
respectively, as discussed in Section 7. The approximate isotropy and uniformity of light
propagation in these preferred frames is a consequence general relativity and of relativistic
kinematics (Eq. (7.3)) if light is assumed to consist of massless (or very light) particles.

The concept of ‘Conventionalty of Clock Synchronisation’ and its corollory, Poincaré’s
formulation of the special relativity principle as a statement of the impossibility of internal
detection of uniform translational motion, stems from misinterpretation of the results of
the MME and its successors. It was assumed that the aether frame in the vicinity of
the Earth is the SCI frame, not as predicted by general relativity, and confirmed by
observation of the Sagnac effect, the ECI frame. Because the magnitude of the ‘aether
wind’ associated with the ECI frame is a factor 10−2 weaker than for the SCI frame no MM-
type experiment was sufficiently sensitive to observe it. Wrongly interpreting the negative
result of the MME as evidence for length contraction it was concluded (from Eq. ((8.2))
that the two-way speed of light is the same in all inertial frames. On further assuming
that clock synchronisation is possible only by exchange of light signals, as suggested
by Einstein, it follows that no measurement of the one-way speed of light is possible.
Since then no physical significance could be assigned to one-way light speed the concept
of ‘Conventionalty of Clock Synchronisation’, analogous to ‘gauge freedom’ in classical
electromagnetism was introduced.

Actually the MME does not give evidence for the existence of length contraction and,
as described in Sections 5 and 6, many methods of clock synchronisation, not relying on
light signal exchange, exist. If any one of these is used there is no problem to measure the
one-way speed of light. Furthermore, if the clock separation is defined and measured in
the frame S, the two-way speed of light (see Eqs. (2.7) and (2.12)) is not the same in the
frames S and S’. In summary the ‘Conventionalty of Clock Synchronisation’ concept is
invalid, being based on misinterpreted experimental data and the false theoretical premise
of frame independence of the two-way speed of light

In the calculations presented in Sections 2, 3 and 4 only space-time geometry in the
frame S was considered i.e. the Galilean definition of velocity of postulate (ii). There
was no mention of the speed of light in the frame S’. However, using the postulate (ii)
also to define the velocity of a light signal in the frame S’, it follows that, at order v/c,
for a light signal moving parallel to the x-axis, the speed of light in the frame S’ is
c ± v (Eq. (8.4)), not c, as tacitly postulated in by Einstein in Ref. [5], in spite of giving
explicitly, in the same paper, Eq. (8.3) which contradicts this postulate. Indeed as pointed
out elsewhere [51] light speed c in the frame S’ is also incompatible with the existence of
the Sagnac effect. Thus if Galilean space-time geometry 5 holds for velocity measurements

5i.e. that time and space intervals are related as in postulate (ii) of Section 2.
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in both S and S’ and the time dilation effect of special relativity occurs (as is confirmed by
experiment [52]) the special relativistic concept most at odds with common sense —the
frame independence of the speed of light— is untenable. How mathematical errors in
Einstein’s original special relativity paper [5] obscured this antinomy between the second
postulate and Einstein’s Eq. (8.3) above is explained in Section 8.

The motivation for Einstein’s second postulate was most likely the invariance of
Maxwell’s equations under the LT and Maxwell’s identification of light with ‘electro-
magnetic waves’, derived from free space Maxwell’s equations, which in virtue of the
frame-invariance of these equations, must have the same speed in all inertial frames.
However, according to the argument just given, this is impossible. Such ‘free space’ elec-
tromagnetic waves also cannot be identified with the photons of quantum electrodynamics
which of necessity have a source in order to exist and, if they participate in an observed
physical process, must also have a sink, i.e. must be both created and destroyed.

These antinomies are simply resolved if it is finally recognised that light really does
consist of particles —the light quanta, for the discovery of which, Einstein was awarded the
Nobel Prize— not (Maxwell’s fame notwithstanding) electromagnetic waves in free space.
In Maxwell’s theory such waves were considered to be disturbances of, i.e. attribibutes
of, some luminiferous aether in just the way that ocean waves are attributes of the ocean
and sound waves attributes of the air. The essential particulate ontolgy of any valid
description of light is then completely missing.

From this modern perspective, Maxwell’s prediction of ‘electromagnetic waves’ with
the same speed as light, would be considered as a valid heuristic motivation for Hertz’
experiments in which low energy photons were first discovered 6

Similarly in Einstein’s first special relativity paper an incorrect derivation of the LT,
based on the second postulate, was given, but the LT was then used to correctly derive
time dilation and the equivalence of mass and energy [48]. The role of the second postulate,
like Maxwell’s ‘electromagnetic waves’, was again a heuristic one. In contrast, in spite of
its title, Einstein’s recognition that light does consist of particles [44] is, by itself, a major
advance in the understanding of nature, not a heuristic one: a false argument or postulate
that still leads to a prediction that does correctly describe some aspect of the real world.
Maxwell’s derivation of the existence of electromagnetic waves as a consequence of his
electromagnetc field equations and Einstein’s postulate concerning the constancy of the
speed of light, were both heuristic in this sense.

6Hertz actually showed that the one-way speed of ‘electromagnetic waves’ created by an antenna was,
at large distances from the source, equal to the speed of light [53, 54].
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Appendix

Figure 3: Scheme of an experiment to determine the prameters v, θ and D, by measuring

the epochs of spatial coincidences of the clock C’1 with the clocks F+ and B+, and of the

clock C’0 with the clocks F− and B−. The synchronised clocks F+, F−, B+ and B− are at

rest in the frame S, C’0 and C’1 at rest in the frame S’. See text for discussion.

An experimental set-up to measure the geometrical parameters D, θ and the common
velocity, v, in the frame S of the clocks C’0 and C’1 discussed in Section 2 is shown
schematically in Fig. 3. Synchronised clocks F+, F−, B+ and B−

7 are at rest in S at the
corners of a rectangle of known dimensions. Lines joining F+ to B+ and F− to B− are
parallel to the x-axis and the direction of motion of C’0 and C’1 . The epochs of the clocks
at rest in S are recorded when the x-coordinates of C’1 and F+ or B+, or C’0 and F− or
B− are the same. Denoting the epochs of these spatial coincidences as: t(F+), t(B+),
t(F−) and t(B−) the space-time geometry of Fig. 3 gives the relations:

t(B+) − t(F+) =
Lx

v
, (A.1)

t(B+) − t(F−) =
Lx − D cos θ

v
, (A.2)

t(B−) − t(F−) =
Lx

v
. (A.3)

The velocity v is determined by (A.1) and (A.2) as:

v =
Lx

2

[

1

t(B+) − t(F+)
+

1

t(B−) − t(F−)

]

. (A.4)

7F stands for ‘front’ and B for ‘back’ as viewed from the moving clocks C’0 and C’1 .
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The geometry of Fig. 3 gives:
D sin θ = Ly (A.5)

while transposing (A.2) gives:

D cos θ = Lx − v[t(B+) − t(F−)]. (A.6)

The parameters θ and D are then determined by (A.5) and (A.6) to be:

θ = arctan

[

Ly

Lx − v[t(B+) − t(F−)]

]

, (A.7)

D = [L2
y + (Lx − v[t(B+) − t(F−)])2]

1

2 (A.8)

where v is given by Eq. (A.4).
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